D. A. Bourgoyne, Carolyn Q. Judge, J. Hamel, S. Ceccio, D. Dowling
{"title":"Lifting Surface Flow, Pressure, and Vibration at High Reynolds-Number","authors":"D. A. Bourgoyne, Carolyn Q. Judge, J. Hamel, S. Ceccio, D. Dowling","doi":"10.1115/imece2001/nca-23505","DOIUrl":null,"url":null,"abstract":"\n This paper describes an experimental effort to identify and document the turbulent flow, induced surface pressures, and structural response of a hydrofoil at chord-based Reynolds numbers up to 60 million. Special interest is focused on the trailing edge of the foil where most of the measurements are made. The experiments are conducted at the US Navy’s W. B. Morgan Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 0.5 to 18.3 m/s. The foil section is a modified NACA 16 with a flat pressure side. The measurements presented in this paper include foil surface static and dynamic pressures, foil vibration, LDV-determined average flow speeds and turbulence quantities, and PIV flow fields in the immediate vicinity of the foil’s trailing edge.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes an experimental effort to identify and document the turbulent flow, induced surface pressures, and structural response of a hydrofoil at chord-based Reynolds numbers up to 60 million. Special interest is focused on the trailing edge of the foil where most of the measurements are made. The experiments are conducted at the US Navy’s W. B. Morgan Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 0.5 to 18.3 m/s. The foil section is a modified NACA 16 with a flat pressure side. The measurements presented in this paper include foil surface static and dynamic pressures, foil vibration, LDV-determined average flow speeds and turbulence quantities, and PIV flow fields in the immediate vicinity of the foil’s trailing edge.