Multimodal Named Entity Recognition and Relation Extraction with Retrieval-Augmented Strategy

Xuming Hu
{"title":"Multimodal Named Entity Recognition and Relation Extraction with Retrieval-Augmented Strategy","authors":"Xuming Hu","doi":"10.1145/3539618.3591790","DOIUrl":null,"url":null,"abstract":"Multimodal Named Entity Recognition (MNER) and Multimodal Relation Extraction (MRE) are tasks in information retrieval that aim to recognize entities and extract relations among them using information from multiple modalities, such as text and images. Although current methods have attempted a variety of modality fusion approaches to enhance the information in text, a large amount of readily available internet retrieval data has not been considered. Therefore, we attempt to retrieve real-world text related to images, objects, and entire sentences from the internet and use this retrieved text as input for cross-modal fusion to improve the performance of entity and relation extraction tasks in the text.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal Named Entity Recognition (MNER) and Multimodal Relation Extraction (MRE) are tasks in information retrieval that aim to recognize entities and extract relations among them using information from multiple modalities, such as text and images. Although current methods have attempted a variety of modality fusion approaches to enhance the information in text, a large amount of readily available internet retrieval data has not been considered. Therefore, we attempt to retrieve real-world text related to images, objects, and entire sentences from the internet and use this retrieved text as input for cross-modal fusion to improve the performance of entity and relation extraction tasks in the text.
基于检索增强策略的多模态命名实体识别与关系提取
多模态命名实体识别(MNER)和多模态关系提取(MRE)是利用文本和图像等多模态信息识别实体并提取实体之间关系的信息检索任务。虽然目前的方法尝试了多种情态融合方法来增强文本中的信息,但没有考虑到大量现成的互联网检索数据。因此,我们尝试从互联网上检索与图像、对象和整个句子相关的现实世界文本,并将这些检索到的文本作为跨模态融合的输入,以提高文本中实体和关系提取任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信