Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations

A. Mesaros, T. Heittola, O. Dikmen, T. Virtanen
{"title":"Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations","authors":"A. Mesaros, T. Heittola, O. Dikmen, T. Virtanen","doi":"10.1109/ICASSP.2015.7177950","DOIUrl":null,"url":null,"abstract":"Methods for detection of overlapping sound events in audio involve matrix factorization approaches, often assigning separated components to event classes. We present a method that bypasses the supervised construction of class models. The method learns the components as a non-negative dictionary in a coupled matrix factorization problem, where the spectral representation and the class activity annotation of the audio signal share the activation matrix. In testing, the dictionaries are used to estimate directly the class activations. For dealing with large amount of training data, two methods are proposed for reducing the size of the dictionary. The methods were tested on a database of real life recordings, and outperformed previous approaches by over 10%.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7177950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

Methods for detection of overlapping sound events in audio involve matrix factorization approaches, often assigning separated components to event classes. We present a method that bypasses the supervised construction of class models. The method learns the components as a non-negative dictionary in a coupled matrix factorization problem, where the spectral representation and the class activity annotation of the audio signal share the activation matrix. In testing, the dictionaries are used to estimate directly the class activations. For dealing with large amount of training data, two methods are proposed for reducing the size of the dictionary. The methods were tested on a database of real life recordings, and outperformed previous approaches by over 10%.
使用谱表示和类活动注释的耦合矩阵分解在真实生活记录中的声音事件检测
检测音频中重叠声音事件的方法涉及矩阵分解方法,通常将分离的组件分配给事件类。我们提出了一种绕过类模型的监督构造的方法。该方法将分量作为非负字典学习到耦合矩阵分解问题中,其中音频信号的频谱表示和类活动注释共享激活矩阵。在测试中,字典被用来直接估计类的激活。针对训练数据量大的问题,提出了两种减小字典大小的方法。这些方法在真实生活记录的数据库中进行了测试,结果比以前的方法高出10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信