{"title":"Geometrical realization of set systems and probabilistic communication complexity","authors":"N. Alon, P. Frankl, V. Rödl","doi":"10.1109/SFCS.1985.30","DOIUrl":null,"url":null,"abstract":"Let d = d(n) be the minimum d such that for every sequence of n subsets F1, F2, . . . , Fn of {1, 2, . . . , n} there exist n points P1, P2, . . . , Pn and n hyperplanes H1, H2 .... , Hn in Rd such that Pj lies in the positive side of Hi iff j ∈ Fi. Then n/32 ≤ d(n) ≤ (1/2 + 0(1)) ¿ n. This implies that the probabilistic unbounded-error 2-way complexity of almost all the Boolean functions of 2p variables is between p-5 and p, thus solving a problem of Yao and another problem of Paturi and Simon. The proof of (1) combines some known geometric facts with certain probabilistic arguments and a theorem of Milnor from real algebraic geometry.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106
Abstract
Let d = d(n) be the minimum d such that for every sequence of n subsets F1, F2, . . . , Fn of {1, 2, . . . , n} there exist n points P1, P2, . . . , Pn and n hyperplanes H1, H2 .... , Hn in Rd such that Pj lies in the positive side of Hi iff j ∈ Fi. Then n/32 ≤ d(n) ≤ (1/2 + 0(1)) ¿ n. This implies that the probabilistic unbounded-error 2-way complexity of almost all the Boolean functions of 2p variables is between p-5 and p, thus solving a problem of Yao and another problem of Paturi and Simon. The proof of (1) combines some known geometric facts with certain probabilistic arguments and a theorem of Milnor from real algebraic geometry.