Electrocardiogram Classification Based on Deep Convolutional Neural Networks: A Review

A. Admin, A. Abdulazeez
{"title":"Electrocardiogram Classification Based on Deep Convolutional Neural Networks: A Review","authors":"A. Admin, A. Abdulazeez","doi":"10.54216/fpa.030103","DOIUrl":null,"url":null,"abstract":"Due to many new medical uses, the value of ECG classification is very demanding. There are some Machine Learning (ML) algorithms currently available that can be used for ECG data processing and classification. The key limitations of these ML studies, however, are the use of heuristic hand-crafted or engineered characteristics of shallow learning architectures. The difficulty lies in the probability of not having the most suitable functionality that will provide this ECG problem with good classification accuracy. One choice suggested is to use deep learning algorithms in which the first layer of CNN acts as a feature. This paper summarizes some of the key approaches of ECG classification in machine learning, assessing them in terms of the characteristics they use, the precision of classification important physiological keys ECG biomarkers derived from machine learning techniques, and statistical modeling and supported simulation.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.030103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to many new medical uses, the value of ECG classification is very demanding. There are some Machine Learning (ML) algorithms currently available that can be used for ECG data processing and classification. The key limitations of these ML studies, however, are the use of heuristic hand-crafted or engineered characteristics of shallow learning architectures. The difficulty lies in the probability of not having the most suitable functionality that will provide this ECG problem with good classification accuracy. One choice suggested is to use deep learning algorithms in which the first layer of CNN acts as a feature. This paper summarizes some of the key approaches of ECG classification in machine learning, assessing them in terms of the characteristics they use, the precision of classification important physiological keys ECG biomarkers derived from machine learning techniques, and statistical modeling and supported simulation.
基于深度卷积神经网络的心电图分类研究进展
由于许多新的医疗用途,心电分类的价值非常高。目前有一些机器学习(ML)算法可用于心电数据处理和分类。然而,这些机器学习研究的关键限制是使用启发式手工制作或浅层学习架构的工程特征。困难在于可能没有最合适的功能来为这个ECG问题提供良好的分类精度。一种选择是使用深度学习算法,其中CNN的第一层作为特征。本文总结了机器学习中心电分类的一些关键方法,从它们使用的特征、机器学习技术衍生的重要生理关键心电生物标志物的分类精度、统计建模和支持仿真等方面对它们进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信