{"title":"Spontaneous current and voltage generation in gated quantum dot structures","authors":"K. Král","doi":"10.1109/ICTON.2008.4598610","DOIUrl":null,"url":null,"abstract":"Theoretical results are presented on the electronic transport in the open zero-dimensional nanostructure, or a nanotransistor, in which we demonstrate the manifestation of the effect of the upconversion of the electronic energy level occupation. The self-consistent Born approximation is used to the electron-phonon interaction in a quantum dot. The well-known simple Toy Model of Supprio Datta is used for the description of a nanotransistor. We show that in an asymmetric nanodevice one can obtain a spontaneous potential step generation between the electric contacts of such a device. This will be documented numerically on a nanotransistor model in which the active region of the nanotransistor is a quantum dot having two electronic bound states. The effect can be important for the information processing using nanostructures.","PeriodicalId":230802,"journal":{"name":"2008 10th Anniversary International Conference on Transparent Optical Networks","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 10th Anniversary International Conference on Transparent Optical Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2008.4598610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical results are presented on the electronic transport in the open zero-dimensional nanostructure, or a nanotransistor, in which we demonstrate the manifestation of the effect of the upconversion of the electronic energy level occupation. The self-consistent Born approximation is used to the electron-phonon interaction in a quantum dot. The well-known simple Toy Model of Supprio Datta is used for the description of a nanotransistor. We show that in an asymmetric nanodevice one can obtain a spontaneous potential step generation between the electric contacts of such a device. This will be documented numerically on a nanotransistor model in which the active region of the nanotransistor is a quantum dot having two electronic bound states. The effect can be important for the information processing using nanostructures.