Load Flow Analysis of IEEE 14 Bus System Using ANN Technique

Satyam Tiwari, M. A. Ansari, Krishan Kumar, Sankalp Chaturvedi, Mukul Singh, Suresh Kumar
{"title":"Load Flow Analysis of IEEE 14 Bus System Using ANN Technique","authors":"Satyam Tiwari, M. A. Ansari, Krishan Kumar, Sankalp Chaturvedi, Mukul Singh, Suresh Kumar","doi":"10.1109/SEEMS.2018.8687353","DOIUrl":null,"url":null,"abstract":"Load flow studies are introduced to acquire voltage, active and reactive power and load angle at every bus of power system to dissect its steady state conditions. Distinctive artificial neural network are produced for estimation of bus voltages and other obscure parameters of the system. A feed-forward back propagation network with sundry learning algorithms are created to acquire bus parameters. The proposed method is authenticated through a MATLAB simulation.","PeriodicalId":248393,"journal":{"name":"2018 International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEEMS.2018.8687353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Load flow studies are introduced to acquire voltage, active and reactive power and load angle at every bus of power system to dissect its steady state conditions. Distinctive artificial neural network are produced for estimation of bus voltages and other obscure parameters of the system. A feed-forward back propagation network with sundry learning algorithms are created to acquire bus parameters. The proposed method is authenticated through a MATLAB simulation.
基于神经网络技术的IEEE 14总线系统负荷流分析
引入潮流研究,获取电力系统各母线的电压、有功、无功功率和负载角,剖析其稳态状态。利用独特的人工神经网络对母线电压和系统中其他模糊参数进行估计。采用多种学习算法建立了前馈反传播网络获取总线参数。通过MATLAB仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信