A new reinforcement learning based automatic generation controller for hydro-thermal power systems

T. Ahamed, P. S. Sastry, P. Rao
{"title":"A new reinforcement learning based automatic generation controller for hydro-thermal power systems","authors":"T. Ahamed, P. S. Sastry, P. Rao","doi":"10.1109/TENCON.2003.1273223","DOIUrl":null,"url":null,"abstract":"Recently, we proposed a reinforcement learning (RL) based approach for designing an automatic generation controller for a two-area power system (Ahamed, T.P.I. et al., Electric Power Systems Research, vol.63, p.9-26, 2002), where we demonstrated the efficacy of the approach on an identical, simple, two-area model. This paper aims to demonstrate an alternative RL-AGC design which is simpler. Its effectiveness is demonstrated by considering a hydro-thermal system whose dynamics are more complicated than the system considered previously.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, we proposed a reinforcement learning (RL) based approach for designing an automatic generation controller for a two-area power system (Ahamed, T.P.I. et al., Electric Power Systems Research, vol.63, p.9-26, 2002), where we demonstrated the efficacy of the approach on an identical, simple, two-area model. This paper aims to demonstrate an alternative RL-AGC design which is simpler. Its effectiveness is demonstrated by considering a hydro-thermal system whose dynamics are more complicated than the system considered previously.
一种新的基于强化学习的火电系统自动发电控制器
最近,我们提出了一种基于强化学习(RL)的方法来设计两区电力系统的自动发电控制器(Ahamed, T.P.I.等人,《电力系统研究》,vol.63, p.9-26, 2002),我们在一个相同的、简单的两区模型上证明了该方法的有效性。本文旨在演示一种更简单的替代RL-AGC设计。通过考虑动力学比先前考虑的系统更复杂的水热系统来证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信