Unsupervised key-phrases extraction from scientific papers using domain and linguistic knowledge

M. Krapivin, M. Marchese, Andrei Yadrantsau, Yanchun Liang
{"title":"Unsupervised key-phrases extraction from scientific papers using domain and linguistic knowledge","authors":"M. Krapivin, M. Marchese, Andrei Yadrantsau, Yanchun Liang","doi":"10.1109/ICDIM.2008.4746749","DOIUrl":null,"url":null,"abstract":"The domain of Digital Libraries presents specific challenges for unsupervised information extraction to support both the automatic classification of documents and the enhancement of userspsila navigation in the digital content. In this paper, we propose a combined use of machine learning techniques (i.e. Support Vector Machines) and Natural Language Processing techniques (i.e. Stanford NLP parser) to tackle the problem of unsupervised key-phrases extraction from scientific papers. The proposed method strongly depends on the robust structural properties of a scientific paper as well as on the lexical knowledge that we are able to mine from its text. For the experimental assessment we have use a subset of ACM papers in the Computer Science domain containing 400 documents. Preliminary evaluation of the approach shows promising result that improves - on the same data-set - on state-of-the-art Bayesian learning system KEA from a minimum 27% to a maximum 77% depending on KEA parameters tuning and specific evaluation set. Our assessment is performed by comparison with key-phrases assigned by human experts in the specific domain and freely available through ACM portal.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The domain of Digital Libraries presents specific challenges for unsupervised information extraction to support both the automatic classification of documents and the enhancement of userspsila navigation in the digital content. In this paper, we propose a combined use of machine learning techniques (i.e. Support Vector Machines) and Natural Language Processing techniques (i.e. Stanford NLP parser) to tackle the problem of unsupervised key-phrases extraction from scientific papers. The proposed method strongly depends on the robust structural properties of a scientific paper as well as on the lexical knowledge that we are able to mine from its text. For the experimental assessment we have use a subset of ACM papers in the Computer Science domain containing 400 documents. Preliminary evaluation of the approach shows promising result that improves - on the same data-set - on state-of-the-art Bayesian learning system KEA from a minimum 27% to a maximum 77% depending on KEA parameters tuning and specific evaluation set. Our assessment is performed by comparison with key-phrases assigned by human experts in the specific domain and freely available through ACM portal.
利用领域和语言知识从科学论文中提取无监督关键短语
为了支持文档的自动分类和增强用户在数字内容中的导航能力,数字图书馆领域对无监督信息提取提出了具体的挑战。在本文中,我们提出结合使用机器学习技术(即支持向量机)和自然语言处理技术(即斯坦福NLP解析器)来解决从科学论文中提取无监督关键短语的问题。所提出的方法强烈依赖于科学论文的强大结构特性以及我们能够从其文本中挖掘的词汇知识。对于实验评估,我们使用了包含400个文档的计算机科学领域的ACM论文子集。该方法的初步评估显示了有希望的结果,在相同的数据集上,最先进的贝叶斯学习系统KEA从最小的27%提高到最大的77%,这取决于KEA参数的调整和具体的评估集。我们的评估是通过与特定领域的人类专家分配的关键短语进行比较来完成的,这些关键短语可以通过ACM门户免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信