Short-term wind speed forecasting with ARIMA model

V. Radziukynas, A. Klementavicius
{"title":"Short-term wind speed forecasting with ARIMA model","authors":"V. Radziukynas, A. Klementavicius","doi":"10.1109/RTUCON.2014.6998223","DOIUrl":null,"url":null,"abstract":"The paper deals with the short-term forecasting of wind speed for the Laukžeme wind farm (Lithuania) using time series approach. The ARIMA model was selected and its best structure determined using the historical wind speed data (4 months) and varying both learning interval (3-5 days) of the model and the factual data averaging time (1-6 hours). The accuracy of forecasting was evaluated in terms of RMSE and absolute error. The forecasting results for 39 consecutive time intervals with 6-48 hourly forecasts are presented and discussed.","PeriodicalId":259790,"journal":{"name":"2014 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2014.6998223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The paper deals with the short-term forecasting of wind speed for the Laukžeme wind farm (Lithuania) using time series approach. The ARIMA model was selected and its best structure determined using the historical wind speed data (4 months) and varying both learning interval (3-5 days) of the model and the factual data averaging time (1-6 hours). The accuracy of forecasting was evaluated in terms of RMSE and absolute error. The forecasting results for 39 consecutive time intervals with 6-48 hourly forecasts are presented and discussed.
用ARIMA模式预报短期风速
本文采用时间序列方法对立陶宛Laukžeme风电场进行了短期风速预报。利用历史风速数据(4个月),改变模型的学习间隔(3-5天)和实际数据平均时间(1-6小时),选择ARIMA模型并确定其最佳结构。用均方根误差和绝对误差来评价预测的准确性。给出了连续39个时间间隔6 ~ 48小时的预报结果,并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信