Finding the Smallest Ellipse Containing a Point Set based on Genetic Algorithms

Shixiang Li, Hong-da Fan, Yuli Wang
{"title":"Finding the Smallest Ellipse Containing a Point Set based on Genetic Algorithms","authors":"Shixiang Li, Hong-da Fan, Yuli Wang","doi":"10.1109/KAMW.2008.4810584","DOIUrl":null,"url":null,"abstract":"Finding one of the smallest non-standard ellipse containing a given point set, is very useful in image and picture labeling. The paper presents an approach to seek the ellipse. The paper was not going to seek the equation of the ellipse, it solved the 5 elliptical parameters (the long axis a, the short axis b, the elliptical center and the rotation k) for determining the ellipse, instead. In order to reduce the problem complexity, the search of non-standard ellipse was turned into the standard ellipse's search through spatial coordinate transformation. And the genetic algorithms are adopted to optimize the ultimate aim to solve the smallest non-standard ellipse. The experiment results show that the approach is effective.","PeriodicalId":375613,"journal":{"name":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAMW.2008.4810584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Finding one of the smallest non-standard ellipse containing a given point set, is very useful in image and picture labeling. The paper presents an approach to seek the ellipse. The paper was not going to seek the equation of the ellipse, it solved the 5 elliptical parameters (the long axis a, the short axis b, the elliptical center and the rotation k) for determining the ellipse, instead. In order to reduce the problem complexity, the search of non-standard ellipse was turned into the standard ellipse's search through spatial coordinate transformation. And the genetic algorithms are adopted to optimize the ultimate aim to solve the smallest non-standard ellipse. The experiment results show that the approach is effective.
基于遗传算法求包含点集的最小椭圆
寻找包含给定点集的最小非标准椭圆之一,在图像和图片标注中非常有用。本文提出了一种求椭圆的方法。本文不寻求椭圆的方程,而是通过求解椭圆的5个参数(长轴a、短轴b、椭圆中心和旋转k)来确定椭圆。为了降低问题的复杂度,通过空间坐标变换将非标准椭圆的搜索转化为标准椭圆的搜索。采用遗传算法优化最终目标,求解最小非标准椭圆。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信