Epileptic seizure detection combining power spectral density and high-frequency oscillations

Rabia Tutuk, Reyhan Zengi̇n
{"title":"Epileptic seizure detection combining power spectral density and high-frequency oscillations","authors":"Rabia Tutuk, Reyhan Zengi̇n","doi":"10.18100/ijamec.1229907","DOIUrl":null,"url":null,"abstract":"Detection of pre-seizure signs in epileptic signals may help patients to survive the seizure with minimal damage. This study aims to detect epileptic seizure patterns using EEG datasets of five patients. The signals' maximum power spectral density (PSD) and high-frequency oscillations (HFOs) signals are investigated. The PSDs of all patients' signals are calculated, and the subbands of the maximum PSD are examined. It is observed that 95%, 85%, 85%, 75%, and 80% of the channels of the five patients are in the sum of delta and theta subbands of the maximum PSD, respectively. All patients' maximum power frequency subbands of F4 and T3 channels included only delta and theta subbands. Furthermore, frequency increase rates of pre-ictal and ictal signals are investigated, and increasing PSDs of ripples and fast ripples are then calculated. A much higher-frequency ripple follows the low-frequency ripple in 75%, 75%, 65%, 85%, and 75% of the channels of the first, second, third, fourth, and fifth patients, respectively. For the pre-ictal data, a much higher frequency ripple is not seen, followed by a low-frequency ripple in 90%, 85%, 75%, 90%, and 90% of all channels of five patients, respectively. In addition, in this study, the frequency of signals is observed to be 80 Hz and above in the Fp2, C4, P4, O2, and Pz channels, which are common to all patients. Consequently, examining PSD and HFO signals ensures the detection of the differences between the data sets and detects the epileptic seizure patterns in all five patients.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.1229907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of pre-seizure signs in epileptic signals may help patients to survive the seizure with minimal damage. This study aims to detect epileptic seizure patterns using EEG datasets of five patients. The signals' maximum power spectral density (PSD) and high-frequency oscillations (HFOs) signals are investigated. The PSDs of all patients' signals are calculated, and the subbands of the maximum PSD are examined. It is observed that 95%, 85%, 85%, 75%, and 80% of the channels of the five patients are in the sum of delta and theta subbands of the maximum PSD, respectively. All patients' maximum power frequency subbands of F4 and T3 channels included only delta and theta subbands. Furthermore, frequency increase rates of pre-ictal and ictal signals are investigated, and increasing PSDs of ripples and fast ripples are then calculated. A much higher-frequency ripple follows the low-frequency ripple in 75%, 75%, 65%, 85%, and 75% of the channels of the first, second, third, fourth, and fifth patients, respectively. For the pre-ictal data, a much higher frequency ripple is not seen, followed by a low-frequency ripple in 90%, 85%, 75%, 90%, and 90% of all channels of five patients, respectively. In addition, in this study, the frequency of signals is observed to be 80 Hz and above in the Fp2, C4, P4, O2, and Pz channels, which are common to all patients. Consequently, examining PSD and HFO signals ensures the detection of the differences between the data sets and detects the epileptic seizure patterns in all five patients.
结合功率谱密度和高频振荡的癫痫发作检测
在癫痫信号中检测出癫痫发作前的迹象可能有助于患者以最小的损害度过癫痫发作。本研究旨在利用5例患者的脑电图数据集检测癫痫发作模式。研究了信号的最大功率谱密度(PSD)和高频振荡(HFOs)信号。计算所有患者信号的PSD,并检测最大PSD的子带。观察到,5例患者的通道分别有95%、85%、85%、75%和80%位于最大PSD的delta和theta亚带之和。所有患者F4和T3通道的最大功率频率子带均仅包括delta和theta子带。此外,研究了临界前和临界信号的频率增加率,并计算了波纹和快速波纹的增加psd。在第一、第二、第三、第四和第五名患者的75%、75%、65%、85%和75%的通道中,低频纹波之后分别出现了频率更高的纹波。对于孕前数据,没有看到更高频率的纹波,随后在5例患者的所有通道中分别有90%、85%、75%、90%和90%出现低频纹波。此外,在本研究中,Fp2、C4、P4、O2和Pz通道的信号频率均在80 Hz及以上,这些信号在所有患者中都是常见的。因此,检查PSD和HFO信号确保检测数据集之间的差异,并检测所有5例患者的癫痫发作模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信