Integration of a Multi-scale Homogenization Model into Finite Element Software for Predicting Mechanical Properties of Bulk Moulding Compound (BMC) Composite
{"title":"Integration of a Multi-scale Homogenization Model into Finite Element Software for Predicting Mechanical Properties of Bulk Moulding Compound (BMC) Composite","authors":"L. Nhung, Vu Dinh Quy, V. Huy, Phan Truc Dien","doi":"10.11648/J.IJMEA.S.2017050401.15","DOIUrl":null,"url":null,"abstract":"Bulk Moulding Compound (BMC) is a short fiber composite with random orientation, used in many industrial sectors such as automotive, electrical,... Design and optimization of composite structures made of BMC meet difficulties due to the nature of this material and thus have not been integrated in the finite element software. This paper introduces a method to build and integrate a new computational model into finite element software (ABAQUS). The chosen model is a multi-scale homogenization model, which helps to calculate mechanical properties of composite materials by using the properties of the components and orientation tensor. This integration can be applied for prediction of composite properties on many kinds of materials, reducing time and cost for suppliers when it comes to optimization of mechanical properties.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.S.2017050401.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk Moulding Compound (BMC) is a short fiber composite with random orientation, used in many industrial sectors such as automotive, electrical,... Design and optimization of composite structures made of BMC meet difficulties due to the nature of this material and thus have not been integrated in the finite element software. This paper introduces a method to build and integrate a new computational model into finite element software (ABAQUS). The chosen model is a multi-scale homogenization model, which helps to calculate mechanical properties of composite materials by using the properties of the components and orientation tensor. This integration can be applied for prediction of composite properties on many kinds of materials, reducing time and cost for suppliers when it comes to optimization of mechanical properties.