Internet-Wide Scanners Classification using Gaussian Mixture and Hidden Markov Models

Giulia De Santis, Abdelkader Lahmadi, J. François, O. Festor
{"title":"Internet-Wide Scanners Classification using Gaussian Mixture and Hidden Markov Models","authors":"Giulia De Santis, Abdelkader Lahmadi, J. François, O. Festor","doi":"10.1109/NTMS.2018.8328698","DOIUrl":null,"url":null,"abstract":"Internet-wide scanners are heavily used for malicious activities. This work models, from the scanned system point of view, spatial and temporal movements of Network Scanning Activities (NSAs), related to the difference of successive scanned IP addresses and timestamps, respectively. Based on real logs of incoming IP packets collected from a darknet, Hidden Markov Models (HMMs) are used to assess what scanning tool is operating. The proposed methodology, using only one of the aforementioned features of the scanning tool, is able to fingerprint what network scanner originated the perceived darknet traffic.","PeriodicalId":140704,"journal":{"name":"2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2018.8328698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Internet-wide scanners are heavily used for malicious activities. This work models, from the scanned system point of view, spatial and temporal movements of Network Scanning Activities (NSAs), related to the difference of successive scanned IP addresses and timestamps, respectively. Based on real logs of incoming IP packets collected from a darknet, Hidden Markov Models (HMMs) are used to assess what scanning tool is operating. The proposed methodology, using only one of the aforementioned features of the scanning tool, is able to fingerprint what network scanner originated the perceived darknet traffic.
使用高斯混合和隐马尔可夫模型的互联网扫描器分类
互联网扫描器被大量用于恶意活动。本文从被扫描系统的角度,分别模拟了网络扫描活动(NSAs)的空间和时间运动与连续扫描IP地址和时间戳的差异有关。基于从暗网收集的传入IP数据包的真实日志,使用隐马尔可夫模型(hmm)来评估哪些扫描工具正在运行。所提出的方法,仅使用上述扫描工具的一个特征,能够指纹网络扫描仪产生感知的暗网流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信