Parallel Position Weight Matrices Algorithms

Mathieu Giraud, Jean-Stéphane Varré
{"title":"Parallel Position Weight Matrices Algorithms","authors":"Mathieu Giraud, Jean-Stéphane Varré","doi":"10.1109/ISPDC.2009.31","DOIUrl":null,"url":null,"abstract":"Position Weight Matrices (PWMs) are broadly used in computational biology. The basic problem, SCAN, aims to find the occurrences of a given PWM in large sequences. Some other PWM tasks share a common NP-hard subproblem, SCOREDISTRIBUTION. The existing algorithms rely on the enumeration on a large set of scores or words, and they are mostly not suitable for parallelization.We propose a new algorithm, BUCKETSCOREDISTRIBUTION, that is both very efficient and suitable for parallelization.We bound the error induced by this algorithm. We realized a GPU prototype for SCAN and BUCKETSCOREDISTRIBUTION with the CUDA libraries, and report for the different problems speedups of 21x and 77x on a Nvidia GTX 280.","PeriodicalId":226126,"journal":{"name":"2009 Eighth International Symposium on Parallel and Distributed Computing","volume":"90 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Eighth International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Position Weight Matrices (PWMs) are broadly used in computational biology. The basic problem, SCAN, aims to find the occurrences of a given PWM in large sequences. Some other PWM tasks share a common NP-hard subproblem, SCOREDISTRIBUTION. The existing algorithms rely on the enumeration on a large set of scores or words, and they are mostly not suitable for parallelization.We propose a new algorithm, BUCKETSCOREDISTRIBUTION, that is both very efficient and suitable for parallelization.We bound the error induced by this algorithm. We realized a GPU prototype for SCAN and BUCKETSCOREDISTRIBUTION with the CUDA libraries, and report for the different problems speedups of 21x and 77x on a Nvidia GTX 280.
平行位置权重矩阵算法
位置权重矩阵在计算生物学中有着广泛的应用。基本问题,扫描,旨在找到一个给定的PWM在大序列的出现。其他一些PWM任务共享一个常见的NP-hard子问题SCOREDISTRIBUTION。现有算法依赖于对大量分数或单词的枚举,大多不适合并行化。我们提出了一种新的算法BUCKETSCOREDISTRIBUTION,它既高效又适合并行化。我们对该算法引起的误差进行了限定。我们用CUDA库实现了SCAN和BUCKETSCOREDISTRIBUTION的GPU原型,并在Nvidia GTX 280上报告了21倍和77倍的不同问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信