Feature preserving anisotropic diffusion for image restoration

V. B. Surya Prasath, J. Moreno
{"title":"Feature preserving anisotropic diffusion for image restoration","authors":"V. B. Surya Prasath, J. Moreno","doi":"10.1109/NCVPRIPG.2013.6776250","DOIUrl":null,"url":null,"abstract":"Anisotropic diffusion based schemes are widely used in image smoothing and noise removal. Typically, the partial differential equation (PDE) used is based on computing image gradients or isotropically smoothed version of the gradient image. To improve the denoising capability of such nonlinear anisotropic diffusion schemes, we introduce a multi-direction based discretization along with a selection strategy for choosing the best direction of possible edge pixels. This strategy avoids the directionality based bias which can over-smooth features that are not aligned with the coordinate axis. The proposed hybrid discretization scheme helps in preserving multi-scale features present in the images via selective smoothing of the PDE. Experimental results indicate such an adaptive modification provides improved restoration results on noisy images.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Anisotropic diffusion based schemes are widely used in image smoothing and noise removal. Typically, the partial differential equation (PDE) used is based on computing image gradients or isotropically smoothed version of the gradient image. To improve the denoising capability of such nonlinear anisotropic diffusion schemes, we introduce a multi-direction based discretization along with a selection strategy for choosing the best direction of possible edge pixels. This strategy avoids the directionality based bias which can over-smooth features that are not aligned with the coordinate axis. The proposed hybrid discretization scheme helps in preserving multi-scale features present in the images via selective smoothing of the PDE. Experimental results indicate such an adaptive modification provides improved restoration results on noisy images.
特征保持各向异性扩散图像恢复
基于各向异性扩散的算法广泛应用于图像平滑和去噪。通常,使用的偏微分方程(PDE)是基于计算图像梯度或梯度图像的各向同性平滑版本。为了提高这种非线性各向异性扩散格式的去噪能力,我们引入了一种基于多方向的离散化方法以及选择可能边缘像素的最佳方向的选择策略。这种策略避免了基于方向性的偏差,这种偏差可能会使不与坐标轴对齐的特征过于平滑。所提出的混合离散化方案通过对偏微分方程进行选择性平滑,有助于保留图像中存在的多尺度特征。实验结果表明,该自适应算法对噪声图像的恢复效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信