IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation

D. Apiletti, Elena Baralis, G. Bruno, T. Cerquitelli
{"title":"IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation","authors":"D. Apiletti, Elena Baralis, G. Bruno, T. Cerquitelli","doi":"10.1109/IS.2006.348429","DOIUrl":null,"url":null,"abstract":"In this paper, we present the IGUANA (individuation of global unsafe anomalies and alarm activation) framework which performs analysis of clinical data to characterize the risk level of a patient and identify dangerous situations. Data mining techniques are exploited to build a model of both normal and unsafe situations, which can be tailored to specific behaviors of a given patient clinical situation. A risk function has been proposed to identify the instantaneous risk of each physiological parameter. The classification phase, performed on-line, assigns a risk label to each measured value. We have developed a prototype of IGUANA in R, an open source environment for statistical analyses and graphical visualization, to validate our approach. Experimental results, performed on 64 records of patients affected by different diseases, show the adaptability and the efficiency of the proposed approach","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present the IGUANA (individuation of global unsafe anomalies and alarm activation) framework which performs analysis of clinical data to characterize the risk level of a patient and identify dangerous situations. Data mining techniques are exploited to build a model of both normal and unsafe situations, which can be tailored to specific behaviors of a given patient clinical situation. A risk function has been proposed to identify the instantaneous risk of each physiological parameter. The classification phase, performed on-line, assigns a risk label to each measured value. We have developed a prototype of IGUANA in R, an open source environment for statistical analyses and graphical visualization, to validate our approach. Experimental results, performed on 64 records of patients affected by different diseases, show the adaptability and the efficiency of the proposed approach
全球不安全异常和警报激活的个性化
在本文中,我们提出了IGUANA(全球不安全异常和警报激活的个性化)框架,该框架对临床数据进行分析,以表征患者的风险水平并识别危险情况。数据挖掘技术用于构建正常和不安全情况的模型,该模型可以针对给定患者临床情况的特定行为进行定制。提出了一个风险函数来识别每个生理参数的瞬时风险。在线进行的分类阶段为每个测量值分配风险标签。我们已经在R中开发了IGUANA的原型,这是一个用于统计分析和图形可视化的开源环境,以验证我们的方法。对64例不同疾病患者的记录进行了实验,结果表明了该方法的适应性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信