Data-Driven Two-Stage Stochastic Programming with Marginal Data

Ke Ren, H. Bidkhori
{"title":"Data-Driven Two-Stage Stochastic Programming with Marginal Data","authors":"Ke Ren, H. Bidkhori","doi":"10.1109/WSC52266.2021.9715339","DOIUrl":null,"url":null,"abstract":"We present new methodologies to solve data-driven two-stage stochastic optimization when only the marginal data are available. We propose a novel data-driven distributionally robust framework that only uses the available marginal data. The proposed model is distinguished from the traditional techniques of solving missing data in that it conducts an integrated analysis of missing data and optimization problems, whereas classical methods conduct separate analyses by first recovering the missing data and then finding the optimal solutions. On the theoretical side, we show that our model produces risk-averse solutions and guarantees finite sample performance. Empirical experiments are conducted on two applications based on synthetic data and real-world data. We validate the proposed finite sample guarantee and show that the proposed approach achieves better out-of-sample performance and higher reliability than the classical data imputation-based approach.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present new methodologies to solve data-driven two-stage stochastic optimization when only the marginal data are available. We propose a novel data-driven distributionally robust framework that only uses the available marginal data. The proposed model is distinguished from the traditional techniques of solving missing data in that it conducts an integrated analysis of missing data and optimization problems, whereas classical methods conduct separate analyses by first recovering the missing data and then finding the optimal solutions. On the theoretical side, we show that our model produces risk-averse solutions and guarantees finite sample performance. Empirical experiments are conducted on two applications based on synthetic data and real-world data. We validate the proposed finite sample guarantee and show that the proposed approach achieves better out-of-sample performance and higher reliability than the classical data imputation-based approach.
具有边缘数据的数据驱动两阶段随机规划
我们提出了新的方法来解决数据驱动的两阶段随机优化时,只有边际数据可用。我们提出了一种新的数据驱动的分布式鲁棒框架,该框架只使用可用的边缘数据。该模型与传统的缺失数据求解方法的不同之处在于,它将缺失数据和优化问题进行综合分析,而传统的方法则是先恢复缺失数据,然后寻找最优解进行独立分析。在理论方面,我们表明我们的模型产生风险规避的解决方案,并保证有限的样本性能。基于合成数据和实际数据对两种应用进行了实证实验。我们验证了所提出的有限样本保证,并表明所提出的方法比经典的基于数据的方法具有更好的样本外性能和更高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信