Comparing and Exploring High-Dimensional Data with Dimensionality Reduction Algorithms and Matrix Visualizations

René Cutura, Michaël Aupetit, Jean-Daniel Fekete, M. Sedlmair
{"title":"Comparing and Exploring High-Dimensional Data with Dimensionality Reduction Algorithms and Matrix Visualizations","authors":"René Cutura, Michaël Aupetit, Jean-Daniel Fekete, M. Sedlmair","doi":"10.1145/3399715.3399875","DOIUrl":null,"url":null,"abstract":"We propose Compadre, a tool for visual analysis for comparing distances of high-dimensional (HD) data and their low-dimensional projections. At the heart is a matrix visualization to represent the discrepancy between distance matrices, linked side-by-side with 2D scatterplot projections of the data. Using different examples and datasets, we illustrate how this approach fosters (1) evaluating dimensionality reduction techniques w.r.t. how well they project the HD data, (2) comparing them to each other side-by-side, and (3) evaluate important data features through subspace comparison. We also present a case study, in which we analyze IEEE VIS authors from 1990 to 2018, and gain new insights on the relationships between coauthors, citations, and keywords. The coauthors are projected as accurately with UMAP as with t-SNE but the projections show different insights. The structure of the citation subspace is very different from the coauthor subspace. The keyword subspace is noisy yet consistent among the three IEEE VIS sub-conferences.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose Compadre, a tool for visual analysis for comparing distances of high-dimensional (HD) data and their low-dimensional projections. At the heart is a matrix visualization to represent the discrepancy between distance matrices, linked side-by-side with 2D scatterplot projections of the data. Using different examples and datasets, we illustrate how this approach fosters (1) evaluating dimensionality reduction techniques w.r.t. how well they project the HD data, (2) comparing them to each other side-by-side, and (3) evaluate important data features through subspace comparison. We also present a case study, in which we analyze IEEE VIS authors from 1990 to 2018, and gain new insights on the relationships between coauthors, citations, and keywords. The coauthors are projected as accurately with UMAP as with t-SNE but the projections show different insights. The structure of the citation subspace is very different from the coauthor subspace. The keyword subspace is noisy yet consistent among the three IEEE VIS sub-conferences.
比较和探索高维数据与降维算法和矩阵可视化
我们提出Compadre,一个可视化分析工具,用于比较高维(HD)数据和它们的低维投影的距离。其核心是一个矩阵可视化,表示距离矩阵之间的差异,与数据的2D散点图投影并排相连。使用不同的示例和数据集,我们说明了这种方法如何促进(1)评估降维技术,而不是它们如何很好地投影高清数据,(2)并排比较它们,以及(3)通过子空间比较评估重要的数据特征。我们还提出了一个案例研究,其中我们分析了1990年至2018年的IEEE VIS作者,并获得了关于共同作者,引文和关键词之间关系的新见解。共同作者对UMAP和t-SNE的预测同样准确,但预测显示了不同的见解。引文子空间的结构与共同作者子空间有很大的不同。关键字子空间在三个IEEE VIS子会议之间是一致的,但存在噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信