Prediction to the Weak Electrical Signal in Chrysanthemum by RBF Neural Networks

Jinli Ding, Miao Wang, Lanzhou Wang, Qiao Li
{"title":"Prediction to the Weak Electrical Signal in Chrysanthemum by RBF Neural Networks","authors":"Jinli Ding, Miao Wang, Lanzhou Wang, Qiao Li","doi":"10.1109/ICNC.2007.565","DOIUrl":null,"url":null,"abstract":"Taking electrical signals in the chrysanthemum (Dendranthema morifolium) as the time series and using the Gaussian radial base function (RBF) and a delayed input window chosen at 50, an intelligent RBF forecast system is set up to forecast signals by the wavelet soft-threshold de-noised backward. It is obvious that the electrical signal in chrysanthemum is a sort of weak, unstable and low frequency signals. There is the maximum amplitude at 1093.44 muV, minimum -605.35 muV, average value -11.94 muV; and below 0.3 Hz at frequency in the chrysanthemum respectively. A result shows that it is feasible to forecast plant electrical signals for the timing by using of the RBF neural network. The forecast data can be used as the important preferences for the intelligent automatic control system based on the adaptive characteristic of plants to achieve the energy saving on the agricultural production in the greenhouse and/or the plastic lookum.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Taking electrical signals in the chrysanthemum (Dendranthema morifolium) as the time series and using the Gaussian radial base function (RBF) and a delayed input window chosen at 50, an intelligent RBF forecast system is set up to forecast signals by the wavelet soft-threshold de-noised backward. It is obvious that the electrical signal in chrysanthemum is a sort of weak, unstable and low frequency signals. There is the maximum amplitude at 1093.44 muV, minimum -605.35 muV, average value -11.94 muV; and below 0.3 Hz at frequency in the chrysanthemum respectively. A result shows that it is feasible to forecast plant electrical signals for the timing by using of the RBF neural network. The forecast data can be used as the important preferences for the intelligent automatic control system based on the adaptive characteristic of plants to achieve the energy saving on the agricultural production in the greenhouse and/or the plastic lookum.
RBF神经网络对菊花微弱电信号的预测
以菊花(Dendranthema morifolium)电信号为时间序列,采用高斯径向基函数(RBF),选择延迟输入窗口为50,通过小波软阈值后向去噪,建立了一个智能RBF预测系统。可见,菊花的电信号是一种微弱的、不稳定的低频信号。振幅最大值为1093.44 muV,最小值为-605.35 muV,平均值为-11.94 muV;在菊花中的频率分别低于0.3 Hz。结果表明,利用RBF神经网络对植物电信号进行定时预测是可行的。预测数据可作为基于植物自适应特性的智能自动控制系统实现温室和/或塑料棚农业生产节能的重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信