APPLICATION OF NEURAL NETWORK AUTO ENCODERS OF UNET TYPE FOR INVERSE PHOTOLITOGRAPHY TASKS

Vladimir Keremet, Yakov M. Karandashev, A. Kuzovkov, Georgy Teplov
{"title":"APPLICATION OF NEURAL NETWORK AUTO ENCODERS OF UNET TYPE FOR INVERSE PHOTOLITOGRAPHY TASKS","authors":"Vladimir Keremet, Yakov M. Karandashev, A. Kuzovkov, Georgy Teplov","doi":"10.29003/m2459.mmmsec-2021/22-25","DOIUrl":null,"url":null,"abstract":"The paper discusses the issue of the applicability of neural networks to the problems of designing microelectronics. The integration of neural network modules into the elements of specialized EDA systems can significantly speed up the modeling processes at different stages of design. The application of a multilayer convolutional architecture of a neural network of the UNET type to the problem of direct and inverse computational photolithography is considered. Using this neural network approach, we were able to speed up the computation of a photo mask for a 90nm process technology by two orders of magnitude and achieve simulation accuracy that surpasses standard inverse photolithography (ILT) methods.","PeriodicalId":151453,"journal":{"name":"Mathematical modeling in materials science of electronic component","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical modeling in materials science of electronic component","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29003/m2459.mmmsec-2021/22-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper discusses the issue of the applicability of neural networks to the problems of designing microelectronics. The integration of neural network modules into the elements of specialized EDA systems can significantly speed up the modeling processes at different stages of design. The application of a multilayer convolutional architecture of a neural network of the UNET type to the problem of direct and inverse computational photolithography is considered. Using this neural network approach, we were able to speed up the computation of a photo mask for a 90nm process technology by two orders of magnitude and achieve simulation accuracy that surpasses standard inverse photolithography (ILT) methods.
unet型神经网络自动编码器在逆照相任务中的应用
本文讨论了神经网络在微电子设计问题中的适用性问题。将神经网络模块集成到专用EDA系统的元素中,可以显著加快设计不同阶段的建模过程。研究了UNET型神经网络的多层卷积结构在正反计算光刻问题中的应用。利用这种神经网络方法,我们能够将用于90nm工艺技术的光掩模的计算速度提高两个数量级,并实现超过标准逆光刻(ILT)方法的模拟精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信