R. Baburske, F. Niedernostheide, E. Falck, J. Lutz, H. Schulze, J. Bauer
{"title":"Destruction behavior of power diodes beyond the SOA limit","authors":"R. Baburske, F. Niedernostheide, E. Falck, J. Lutz, H. Schulze, J. Bauer","doi":"10.1109/ISPSD.2012.6229097","DOIUrl":null,"url":null,"abstract":"Simulation results show how cathode-side filaments may trigger a thermal runaway at the end of a reverse-recovery period of diodes turned off with extremely high current rates. The mechanism is not essentially affected by the edge termination if an appropriate design is chosen. While multiple avalanche-induced filaments may appear during the reverse-recovery period, at the end of the turn-off phase a single “winning” filament carries the total current. This can result in a local melting of the diode. The appearance of a cathode-side filament by itself does not necessarily lead to the diode destruction. However, a high thermal carrier generation rate can result in an uncontrollable increase of the current density in a single filament connecting the anode and the cathode contact. It is shown t hat the reverse-recovery charge as a function of the dc-link voltage shows a characteristic super-linear increase below the critical value dc-link voltage at which the diode current increases uncontrollably.","PeriodicalId":371298,"journal":{"name":"2012 24th International Symposium on Power Semiconductor Devices and ICs","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2012.6229097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Simulation results show how cathode-side filaments may trigger a thermal runaway at the end of a reverse-recovery period of diodes turned off with extremely high current rates. The mechanism is not essentially affected by the edge termination if an appropriate design is chosen. While multiple avalanche-induced filaments may appear during the reverse-recovery period, at the end of the turn-off phase a single “winning” filament carries the total current. This can result in a local melting of the diode. The appearance of a cathode-side filament by itself does not necessarily lead to the diode destruction. However, a high thermal carrier generation rate can result in an uncontrollable increase of the current density in a single filament connecting the anode and the cathode contact. It is shown t hat the reverse-recovery charge as a function of the dc-link voltage shows a characteristic super-linear increase below the critical value dc-link voltage at which the diode current increases uncontrollably.