A Novel Classification for EEG Based Four Class Motor Imagery Using Kullback-Leibler Regularized Riemannian Manifold

P. Mishra, Jagadish Bandaru, P. R. S. K. Malyala, P. Rajalakshmi, D. S. Reddy
{"title":"A Novel Classification for EEG Based Four Class Motor Imagery Using Kullback-Leibler Regularized Riemannian Manifold","authors":"P. Mishra, Jagadish Bandaru, P. R. S. K. Malyala, P. Rajalakshmi, D. S. Reddy","doi":"10.1109/HealthCom.2018.8531086","DOIUrl":null,"url":null,"abstract":"Recent advances in the Brain-Computer Interface (BCI) systems state that the accurate Motor Imagery (MI) classification using Electroencephalogram (EEG) plays a vital role. In this paper, we propose a novel real-time feature extraction and classification architecture for four class MI using a combination of Kullback-Leibler Regularized Riemannian Mean (KLRRM) and Linear SVM. By using the KL regularization, the robustness of the features extracted to the noise and outliers is improved. The performance of the proposed architecture is analyzed on the four class MI dataset 2a from the BCI Competition IV. The performance analysis shows that the proposed architecture achieves an average classification accuracy of 74.43% and 51.53% for both the good and noisy subjects respectively. Also, the emphasis is laid on understanding the performance of regularization, and the improvement of robustness to the noise and outliers is demonstrated using the noisy subjects.","PeriodicalId":232709,"journal":{"name":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2018.8531086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recent advances in the Brain-Computer Interface (BCI) systems state that the accurate Motor Imagery (MI) classification using Electroencephalogram (EEG) plays a vital role. In this paper, we propose a novel real-time feature extraction and classification architecture for four class MI using a combination of Kullback-Leibler Regularized Riemannian Mean (KLRRM) and Linear SVM. By using the KL regularization, the robustness of the features extracted to the noise and outliers is improved. The performance of the proposed architecture is analyzed on the four class MI dataset 2a from the BCI Competition IV. The performance analysis shows that the proposed architecture achieves an average classification accuracy of 74.43% and 51.53% for both the good and noisy subjects respectively. Also, the emphasis is laid on understanding the performance of regularization, and the improvement of robustness to the noise and outliers is demonstrated using the noisy subjects.
基于Kullback-Leibler正则黎曼流形的脑电四类运动图像分类方法
脑机接口(BCI)系统的最新进展表明,利用脑电图(EEG)准确分类运动图像(MI)起着至关重要的作用。本文提出了一种基于Kullback-Leibler正则化黎曼均值(KLRRM)和线性支持向量机的四类机器学习实时特征提取和分类体系结构。通过KL正则化,提高了提取的特征对噪声和离群值的鲁棒性。在BCI Competition IV的四类MI数据集2a上对所提架构的性能进行了分析。性能分析表明,所提架构在良好主题和有噪声主题上的平均分类准确率分别为74.43%和51.53%。此外,重点放在理解正则化的性能,并利用噪声对象演示了对噪声和异常值的鲁棒性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信