G. Paulsen, S. Farritor, T. Huntsberger, H. Aghazarian
{"title":"All Terrain Exploration with the Cliff-bot System","authors":"G. Paulsen, S. Farritor, T. Huntsberger, H. Aghazarian","doi":"10.1109/ROBOT.2005.1570203","DOIUrl":null,"url":null,"abstract":"The Cliff-bot system consists of three individual planetary rovers that work as a team to explore the surface of a cliff. Two of the rovers, designated “Anchor-bots”, assist the motion of a third rappelling “Cliff-bot” down and along a cliff face using tethers. A decentralized control technique is used to control the motion of the three rovers. The objective of this study is to develop several control algorithms that will create a robust and reliable Cliff-bot system. Control is accomplished by combining and prioritizing several different control algorithms into a hybrid deliberative-reactive control structure. Many different algorithms have been successfully developed and tested to provide the Cliff-bot system with stable and robust navigation of terrain slopes of at least 70 degrees.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The Cliff-bot system consists of three individual planetary rovers that work as a team to explore the surface of a cliff. Two of the rovers, designated “Anchor-bots”, assist the motion of a third rappelling “Cliff-bot” down and along a cliff face using tethers. A decentralized control technique is used to control the motion of the three rovers. The objective of this study is to develop several control algorithms that will create a robust and reliable Cliff-bot system. Control is accomplished by combining and prioritizing several different control algorithms into a hybrid deliberative-reactive control structure. Many different algorithms have been successfully developed and tested to provide the Cliff-bot system with stable and robust navigation of terrain slopes of at least 70 degrees.