Fractional Maps and Fractional Attractors. Part II: Fractional Difference $\alpha$-Families of Maps

M. Edelman
{"title":"Fractional Maps and Fractional Attractors. Part II: Fractional Difference $\\alpha$-Families of Maps","authors":"M. Edelman","doi":"10.5890/dnc.2015.11.003","DOIUrl":null,"url":null,"abstract":"In this paper we extend the notion of an $\\alpha$-family of maps to discrete systems defined by simple difference equations with the fractional Caputo difference operator. The equations considered are equivalent to maps with falling factorial-law memory which is asymptotically power-law memory. We introduce the fractional difference Universal, Standard, and Logistic $\\alpha$-Families of Maps and propose to use them to study general properties of discrete nonlinear systems with asymptotically power-law memory.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/dnc.2015.11.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper we extend the notion of an $\alpha$-family of maps to discrete systems defined by simple difference equations with the fractional Caputo difference operator. The equations considered are equivalent to maps with falling factorial-law memory which is asymptotically power-law memory. We introduce the fractional difference Universal, Standard, and Logistic $\alpha$-Families of Maps and propose to use them to study general properties of discrete nonlinear systems with asymptotically power-law memory.
分数映射和分数吸引子。第二部分:分数差分$\alpha$-映射族
本文将$\ α $-族映射的概念推广到具有分数阶Caputo差分算子的简单差分方程所定义的离散系统。所考虑的方程等价于具有下降阶乘记忆的映射,阶乘记忆是渐近幂律记忆。我们引入了映射的分数阶差分全称族、标准族和逻辑族,并提出用它们来研究具有渐近幂律记忆的离散非线性系统的一般性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信