Human-Assisted Learning of Object Models through Active Object Exploration

Robin Rasch, Matthias König
{"title":"Human-Assisted Learning of Object Models through Active Object Exploration","authors":"Robin Rasch, Matthias König","doi":"10.1145/3125739.3132601","DOIUrl":null,"url":null,"abstract":"As robots are increasingly acting in real-world environments, learning and recognition of objects is a problem. Existing methods for learning visual object models use offline techniques to generate high-quality models or online techniques to dynamically expand the object model library. We present an online learning method that creates visual object models through active object exploration. Our approach enables a robot to use manipulations of an object to learn autonomously visual features from several points of view. The ability to segment background, robot parts and the object in the visual space allows to filter irrelevant feature points. This improves the quality of the object model while decreasing its size. Finally, a human-robot interaction enables a human collaborator to improve the object model. The method is evaluated on a Pepper robot, showing the improvement in performance and accuracy with respect to interactive learning.","PeriodicalId":346669,"journal":{"name":"Proceedings of the 5th International Conference on Human Agent Interaction","volume":"624 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Human Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125739.3132601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As robots are increasingly acting in real-world environments, learning and recognition of objects is a problem. Existing methods for learning visual object models use offline techniques to generate high-quality models or online techniques to dynamically expand the object model library. We present an online learning method that creates visual object models through active object exploration. Our approach enables a robot to use manipulations of an object to learn autonomously visual features from several points of view. The ability to segment background, robot parts and the object in the visual space allows to filter irrelevant feature points. This improves the quality of the object model while decreasing its size. Finally, a human-robot interaction enables a human collaborator to improve the object model. The method is evaluated on a Pepper robot, showing the improvement in performance and accuracy with respect to interactive learning.
通过主动对象探索实现对象模型的人工辅助学习
随着机器人越来越多地在现实环境中行动,学习和识别物体是一个问题。现有的学习可视化对象模型的方法使用离线技术来生成高质量的模型,或者使用在线技术来动态扩展对象模型库。我们提出了一种在线学习方法,通过主动对象探索来创建可视化对象模型。我们的方法使机器人能够使用物体的操作来自主地从几个角度学习视觉特征。在视觉空间中分割背景、机器人部件和物体的能力允许过滤不相关的特征点。这提高了对象模型的质量,同时减小了它的大小。最后,人机交互使人类合作者能够改进对象模型。在Pepper机器人上对该方法进行了评估,显示了在交互式学习方面性能和准确性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信