Tracking Control of Neural System using Adaptive Sliding Mode Control for Unknown Nonlinear Function

Chunrong Xia, Irfan Qaisar, M. S. Aslam, Lin Qiaoyu
{"title":"Tracking Control of Neural System using Adaptive Sliding Mode Control for Unknown Nonlinear Function","authors":"Chunrong Xia, Irfan Qaisar, M. S. Aslam, Lin Qiaoyu","doi":"10.1109/ICISCAE52414.2021.9590761","DOIUrl":null,"url":null,"abstract":"In this article, a sliding mode control (SMC) is used to design the tracking control for the neural system based on a networked control system (NCS) that appeared with time delays. First, we established the mathematical forms for the stability analysis, and then proposed the radial basis function to approximate the nonlinear function. Second, we propose the discrete event-triggered scheme (ETS) as a way to make better use of existing bandwidth. Only when our sampled data of plant violates the specific event-triggered condition does the sensor release the data under this ETS. Finally, a nonlinear example is given to demonstrate the effectiveness of our co-design method.","PeriodicalId":121049,"journal":{"name":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE52414.2021.9590761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a sliding mode control (SMC) is used to design the tracking control for the neural system based on a networked control system (NCS) that appeared with time delays. First, we established the mathematical forms for the stability analysis, and then proposed the radial basis function to approximate the nonlinear function. Second, we propose the discrete event-triggered scheme (ETS) as a way to make better use of existing bandwidth. Only when our sampled data of plant violates the specific event-triggered condition does the sensor release the data under this ETS. Finally, a nonlinear example is given to demonstrate the effectiveness of our co-design method.
基于自适应滑模控制的未知非线性神经系统跟踪控制
本文采用滑模控制(SMC)设计了基于网络控制系统(NCS)的神经系统的跟踪控制。首先建立了稳定性分析的数学形式,然后提出了近似非线性函数的径向基函数。其次,我们提出离散事件触发方案(ETS)作为一种更好地利用现有带宽的方法。只有当我们的工厂采样数据违反特定的事件触发条件时,传感器才会在此ETS下释放数据。最后,通过一个非线性算例验证了协同设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信