I. Kallfass, S. Diebold, H. Massler, S. Koch, Matthias Seelmann-Eggebert, A. Leuther
{"title":"Multiple-Throw Millimeter-Wave FET Switches for Frequencies from 60 up to 120 GHz","authors":"I. Kallfass, S. Diebold, H. Massler, S. Koch, Matthias Seelmann-Eggebert, A. Leuther","doi":"10.1109/EMICC.2008.4772320","DOIUrl":null,"url":null,"abstract":"This paper presents the design and performance of various millimeter-wave FET switches realized in a metamorphic HEMT technology. The single-pole multi-throw switch configurations are targeting wireless communication frontends and imaging radiometers at 60, 94 and 120 GHz. In SPDT switches, state-of-the-art insertion loss of 1.4 and 1.8 dB is achieved at 60 and 94 GHz, respectively. Rivalled only by PIN diode switches, an insertion loss of <2 dB is demonstrated up to 120 GHz. Shorted stubs are used to compensate for parasitic FET capacitance and allow for matching. Linearity data is presented for 60 and 94 GHz SPDT switches. A comprehensive comparison with state-of-the-art planar SPDT switches is included. A 2:6 switch network for multi-antenna transceivers achieves <4 dB insertion loss at 60 GHz.","PeriodicalId":344657,"journal":{"name":"2008 European Microwave Integrated Circuit Conference","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 European Microwave Integrated Circuit Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMICC.2008.4772320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
This paper presents the design and performance of various millimeter-wave FET switches realized in a metamorphic HEMT technology. The single-pole multi-throw switch configurations are targeting wireless communication frontends and imaging radiometers at 60, 94 and 120 GHz. In SPDT switches, state-of-the-art insertion loss of 1.4 and 1.8 dB is achieved at 60 and 94 GHz, respectively. Rivalled only by PIN diode switches, an insertion loss of <2 dB is demonstrated up to 120 GHz. Shorted stubs are used to compensate for parasitic FET capacitance and allow for matching. Linearity data is presented for 60 and 94 GHz SPDT switches. A comprehensive comparison with state-of-the-art planar SPDT switches is included. A 2:6 switch network for multi-antenna transceivers achieves <4 dB insertion loss at 60 GHz.