M. Pous, M. Azpúrua, Dongsheng Zhao, J. Wolf, Ferran Silva
{"title":"Time-domain Multitone Impedance Measurement System for Space Applications","authors":"M. Pous, M. Azpúrua, Dongsheng Zhao, J. Wolf, Ferran Silva","doi":"10.1109/EMCEurope51680.2022.9901170","DOIUrl":null,"url":null,"abstract":"This paper presents a time-domain methodology to measure the devices' live impedance at the frequency range between 30 Hz and 100 kHz. This measurement is a requirement for some space applications to ensure the stability between DC/DC converters and the onboard power. The methodology is based on a multitone excitation combined with current and voltage measurements performed with an oscilloscope. The experiments show that the measurement system obtains accurate results and offers new capabilities to deal with the drawbacks that traditional frequency-sweep instrumentation implies. The multitone approach injects signals at the entire frequency range simultaneously. Therefore, the measurement system is able to characterize time-varying and the nonlinear devices. The time-domain measurement system has been validated through different test cases achieving excellent results compared with the ones obtained using the reference impedance frequency-sweep approach.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9901170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a time-domain methodology to measure the devices' live impedance at the frequency range between 30 Hz and 100 kHz. This measurement is a requirement for some space applications to ensure the stability between DC/DC converters and the onboard power. The methodology is based on a multitone excitation combined with current and voltage measurements performed with an oscilloscope. The experiments show that the measurement system obtains accurate results and offers new capabilities to deal with the drawbacks that traditional frequency-sweep instrumentation implies. The multitone approach injects signals at the entire frequency range simultaneously. Therefore, the measurement system is able to characterize time-varying and the nonlinear devices. The time-domain measurement system has been validated through different test cases achieving excellent results compared with the ones obtained using the reference impedance frequency-sweep approach.