Application of Hybrid Neural Network to Detection of Induction Motor Electrical Faults

M. Skowron, M. Wolkiewicz, C. T. Kowalski, T. Orłowska-Kowalska
{"title":"Application of Hybrid Neural Network to Detection of Induction Motor Electrical Faults","authors":"M. Skowron, M. Wolkiewicz, C. T. Kowalski, T. Orłowska-Kowalska","doi":"10.1109/EDPE.2019.8883935","DOIUrl":null,"url":null,"abstract":"Induction motors (IMs) play a key role in industrial drives systems. During motors normal operation, some unexpected damages may occur, resulting in economic losses. Stator windings degradation and rotor broken bars are the most common sources of faults in induction machines. The electrical winding faults, namely the stator inter-turns short circuits and rotor bar damages constitutes around 40% of all faults of the induction motors. Nowadays, faults early detection systems play an essential role in IMs drive control systems. In the aim of faults detection process automation, diagnostic systems are increasingly based on artificial intelligence methods. This paper presents the results of experimental research on the application of axial flux symptoms of the converter-fed induction motor drive to the electrical fault detection and classifications using hybrid neural networks.","PeriodicalId":353978,"journal":{"name":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"33 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE.2019.8883935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Induction motors (IMs) play a key role in industrial drives systems. During motors normal operation, some unexpected damages may occur, resulting in economic losses. Stator windings degradation and rotor broken bars are the most common sources of faults in induction machines. The electrical winding faults, namely the stator inter-turns short circuits and rotor bar damages constitutes around 40% of all faults of the induction motors. Nowadays, faults early detection systems play an essential role in IMs drive control systems. In the aim of faults detection process automation, diagnostic systems are increasingly based on artificial intelligence methods. This paper presents the results of experimental research on the application of axial flux symptoms of the converter-fed induction motor drive to the electrical fault detection and classifications using hybrid neural networks.
混合神经网络在感应电机电气故障检测中的应用
感应电动机(IMs)在工业驱动系统中起着关键作用。在电动机正常运行过程中,可能会发生一些意想不到的损坏,造成经济损失。定子绕组退化和转子断条是感应电机最常见的故障来源。电气绕组故障,即定子匝间短路和转子棒损坏,约占感应电动机全部故障的40%。目前,故障早期检测系统在IMs驱动控制系统中起着至关重要的作用。在故障检测过程自动化的目标下,诊断系统越来越多地基于人工智能方法。本文介绍了将变频感应电动机驱动轴向磁通症状应用于混合神经网络的电气故障检测与分类的实验研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信