Dualfeat: Dual Feature Aggregation for Video Object Detection

Jingning Pan, Kaiwen Du, Y. Yan, Hanzi Wang
{"title":"Dualfeat: Dual Feature Aggregation for Video Object Detection","authors":"Jingning Pan, Kaiwen Du, Y. Yan, Hanzi Wang","doi":"10.1109/ICIP46576.2022.9897580","DOIUrl":null,"url":null,"abstract":"Video object detection aims to detect and track each object in a given video. However, due to the problem of appearance deterioration in the video, it is still challenging to obtain good results when we apply traditional image object detection methods to videos. In this paper, we propose a new feature aggregation method, called Dual Feature Aggregation (DualFeat) for video object detection. By effectively combining the temporal and spatial attention mechanisms, we make full use of the temporal and spatial information in videos. Meanwhile, we leverage a real-time tracker to track detected objects in video frames, where features are aggregated again with previously obtained features. Such a way helps to obtain more comprehensive and richer features, greatly improving the accuracy of video object detection. We perform experiments on the ILSVRC2017 dataset, and the experimental results also verify the effectiveness of our method.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Video object detection aims to detect and track each object in a given video. However, due to the problem of appearance deterioration in the video, it is still challenging to obtain good results when we apply traditional image object detection methods to videos. In this paper, we propose a new feature aggregation method, called Dual Feature Aggregation (DualFeat) for video object detection. By effectively combining the temporal and spatial attention mechanisms, we make full use of the temporal and spatial information in videos. Meanwhile, we leverage a real-time tracker to track detected objects in video frames, where features are aggregated again with previously obtained features. Such a way helps to obtain more comprehensive and richer features, greatly improving the accuracy of video object detection. We perform experiments on the ILSVRC2017 dataset, and the experimental results also verify the effectiveness of our method.
Dualfeat:视频目标检测的双特征聚合
视频对象检测的目的是检测和跟踪给定视频中的每个对象。然而,由于视频中存在外观劣化的问题,将传统的图像目标检测方法应用到视频中,仍然难以获得良好的检测效果。本文提出了一种新的用于视频目标检测的特征聚合方法——双特征聚合(Dual feature aggregation, DualFeat)。通过时间和空间注意机制的有效结合,我们充分利用了视频中的时间和空间信息。同时,我们利用实时跟踪器来跟踪视频帧中检测到的物体,其中的特征与先前获得的特征再次聚合。这样可以获得更全面、更丰富的特征,大大提高视频目标检测的精度。我们在ILSVRC2017数据集上进行了实验,实验结果也验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信