Fusion architectures with Extended KALMAN Filter for locate wheelchair position using sensors measurements

D. Nada, M. B. Salah, M. Bettayeb
{"title":"Fusion architectures with Extended KALMAN Filter for locate wheelchair position using sensors measurements","authors":"D. Nada, M. B. Salah, M. Bettayeb","doi":"10.1109/CISTEM.2014.7077077","DOIUrl":null,"url":null,"abstract":"Tow different architectures are presented to fuse measurements coming from odometers, compass and accelerometer to locate wheelchair position in 2D Cartesian coordinates, with Extended KALMAN Filter (EKF). The performance of these architectures is checked with simulated data. Detailed mathematical expressions are provided which could be useful for algorithm implementation. Comparative studies between these two methods shows that the MF architecture (measurement fusion) provides estimates of states relatively less uncertainty followed by SVF (state vector fusion). The odometers measures give the position with relatively high uncertainty followed by the accelerometer measurements. It shows the need for fusion in navigation system.","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7077077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tow different architectures are presented to fuse measurements coming from odometers, compass and accelerometer to locate wheelchair position in 2D Cartesian coordinates, with Extended KALMAN Filter (EKF). The performance of these architectures is checked with simulated data. Detailed mathematical expressions are provided which could be useful for algorithm implementation. Comparative studies between these two methods shows that the MF architecture (measurement fusion) provides estimates of states relatively less uncertainty followed by SVF (state vector fusion). The odometers measures give the position with relatively high uncertainty followed by the accelerometer measurements. It shows the need for fusion in navigation system.
融合架构与扩展卡尔曼滤波器定位轮椅位置使用传感器测量
采用扩展卡尔曼滤波(EKF),提出了两种不同的架构,融合来自里程表、指南针和加速度计的测量结果,在二维笛卡尔坐标系中定位轮椅的位置。用模拟数据验证了这些体系结构的性能。给出了对算法实现有用的详细数学表达式。两种方法的比较研究表明,测量融合(MF)结构提供的状态估计相对不确定性较小,其次是状态向量融合(SVF)。里程表测量给出的位置具有相对较高的不确定性,然后是加速度计测量。这表明导航系统需要融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信