SOM Clustering Using Spark-MapReduce

Tugdual Sarazin, Hanene Azzag, M. Lebbah
{"title":"SOM Clustering Using Spark-MapReduce","authors":"Tugdual Sarazin, Hanene Azzag, M. Lebbah","doi":"10.1109/IPDPSW.2014.192","DOIUrl":null,"url":null,"abstract":"In this paper, we consider designing clustering algorithms that can be used in MapReduce using Spark platform, one of the most popular programming environment for processing large datasets. We focus on the practical and popular serial Self-organizing Map clustering algorithm (SOM). SOM is one of the famous unsupervised learning algorithms and it's useful for cluster analysis of large quantities of data. We have designed two scalable implementations of SOM-MapReduce algorithm. We report the experiments and demonstrated the performance in terms of classification accuracy, rand, speedup using real and synthetic data with 100 millions of points, using different cores.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"299 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we consider designing clustering algorithms that can be used in MapReduce using Spark platform, one of the most popular programming environment for processing large datasets. We focus on the practical and popular serial Self-organizing Map clustering algorithm (SOM). SOM is one of the famous unsupervised learning algorithms and it's useful for cluster analysis of large quantities of data. We have designed two scalable implementations of SOM-MapReduce algorithm. We report the experiments and demonstrated the performance in terms of classification accuracy, rand, speedup using real and synthetic data with 100 millions of points, using different cores.
使用Spark-MapReduce的SOM集群
在本文中,我们考虑使用Spark平台设计可用于MapReduce的聚类算法,Spark平台是处理大型数据集的最流行的编程环境之一。重点研究了实用且流行的串行自组织映射聚类算法(SOM)。SOM是著名的无监督学习算法之一,它适用于大量数据的聚类分析。我们设计了两个可扩展的SOM-MapReduce算法实现。我们报告了实验结果,并在分类精度、rand、加速方面展示了使用不同核心的真实数据和合成数据的1亿点的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信