Adaptive Video Compression for Video Surveillance Applications

Andrew D. Bagdanov, M. Bertini, A. Bimbo, Lorenzo Seidenari
{"title":"Adaptive Video Compression for Video Surveillance Applications","authors":"Andrew D. Bagdanov, M. Bertini, A. Bimbo, Lorenzo Seidenari","doi":"10.1109/ISM.2011.38","DOIUrl":null,"url":null,"abstract":"This article describes an approach to adaptive video coding for video surveillance applications. Using a combination of low-level features with low computational cost, we show how it is possible to control the quality of video compression so that semantically meaningful elements of the scene are encoded with higher fidelity, while background elements are allocated fewer bits in the transmitted representation. Our approach is based on adaptive smoothing of individual video frames so that image features highly correlated to semantically interesting objects are preserved. Using only low-level image features on individual frames, this adaptive smoothing can be seamlessly inserted into a video coding pipeline as a pre-processing state. Experiments show that our technique is efficient, outperforms standard H.264 encoding at comparable bit rates, and preserves features critical for downstream detection and recognition.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This article describes an approach to adaptive video coding for video surveillance applications. Using a combination of low-level features with low computational cost, we show how it is possible to control the quality of video compression so that semantically meaningful elements of the scene are encoded with higher fidelity, while background elements are allocated fewer bits in the transmitted representation. Our approach is based on adaptive smoothing of individual video frames so that image features highly correlated to semantically interesting objects are preserved. Using only low-level image features on individual frames, this adaptive smoothing can be seamlessly inserted into a video coding pipeline as a pre-processing state. Experiments show that our technique is efficient, outperforms standard H.264 encoding at comparable bit rates, and preserves features critical for downstream detection and recognition.
视频监控应用的自适应视频压缩
本文介绍了一种用于视频监控应用的自适应视频编码方法。使用低计算成本的底层特征组合,我们展示了如何控制视频压缩的质量,以便以更高的保真度对场景的语义有意义的元素进行编码,而背景元素在传输表示中分配更少的比特。我们的方法是基于单个视频帧的自适应平滑,以便保留与语义感兴趣的对象高度相关的图像特征。仅使用单个帧的低级图像特征,这种自适应平滑可以无缝地插入到视频编码管道中作为预处理状态。实验表明,我们的技术是高效的,在相当的比特率下优于标准的H.264编码,并保留了下游检测和识别的关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信