Welding Defect Detection and Classification Using Geometric Features

J. Hassan, A. M. Awan, A. Jalil
{"title":"Welding Defect Detection and Classification Using Geometric Features","authors":"J. Hassan, A. M. Awan, A. Jalil","doi":"10.1109/FIT.2012.33","DOIUrl":null,"url":null,"abstract":"In this paper we present a welding defect detection system using radiographic images. Main goal is to craft a dependable system because a human evaluator is not a stable evaluator besides other humanoid constraints. We present a novel technique for the detection and classification of weld defects by means of geometric features. Firstly noise reduction is done as radiographic images contain noise due to several effects. After this we tend to localize defects with maximum interclass variance and minimum intra class variance. Further we move towards extracting features describing the shape of localized objects in segmented images. Using these shape descriptors (geometric features) we classify the defects by Artificial Neural Network.","PeriodicalId":166149,"journal":{"name":"2012 10th International Conference on Frontiers of Information Technology","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2012.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper we present a welding defect detection system using radiographic images. Main goal is to craft a dependable system because a human evaluator is not a stable evaluator besides other humanoid constraints. We present a novel technique for the detection and classification of weld defects by means of geometric features. Firstly noise reduction is done as radiographic images contain noise due to several effects. After this we tend to localize defects with maximum interclass variance and minimum intra class variance. Further we move towards extracting features describing the shape of localized objects in segmented images. Using these shape descriptors (geometric features) we classify the defects by Artificial Neural Network.
基于几何特征的焊接缺陷检测与分类
本文提出了一种基于射线图像的焊接缺陷检测系统。主要目标是创建一个可靠的系统,因为除了其他类人约束之外,人类评估器并不是一个稳定的评估器。提出了一种利用几何特征对焊缝缺陷进行检测和分类的新方法。首先对射线图像进行降噪处理,因为射线图像由于多种影响而含有噪声。在此之后,我们倾向于用最大的类间方差和最小的类内方差来定位缺陷。进一步,我们将在分割图像中提取描述局部物体形状的特征。利用这些形状描述符(几何特征)对缺陷进行人工神经网络分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信