cTBLS: Augmenting Large Language Models with Conversational Tables

Anirudh S. Sundar, Larry Heck
{"title":"cTBLS: Augmenting Large Language Models with Conversational Tables","authors":"Anirudh S. Sundar, Larry Heck","doi":"10.18653/v1/2023.nlp4convai-1.6","DOIUrl":null,"url":null,"abstract":"Optimizing accuracy and performance while eliminating hallucinations of open-domain conversational large language models (LLMs) is an open research challenge. A particularly promising direction is to augment and ground LLMs with information from structured sources. This paper introduces Conversational Tables cTBLS, a three-step architecture to retrieve and generate dialogue responses grounded on retrieved tabular information. cTBLS uses Transformer encoder embeddings for Dense Table Retrieval and obtains up to 125% relative improvement over the retriever in the previous state-of-the-art system on the HyrbiDialogue dataset. cTBLS then uses a shared process between encoder and decoder models to perform a coarse+fine tabular knowledge (e.g., cell) ranking combined with a GPT-3.5 LLM response generator to yield a 2x relative improvement in ROUGE scores. Finally, human evaluators prefer cTBLs +80% of the time (coherency, fluency) and judge informativeness to be 4x better than the previous state-of-the-art.","PeriodicalId":169166,"journal":{"name":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.nlp4convai-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optimizing accuracy and performance while eliminating hallucinations of open-domain conversational large language models (LLMs) is an open research challenge. A particularly promising direction is to augment and ground LLMs with information from structured sources. This paper introduces Conversational Tables cTBLS, a three-step architecture to retrieve and generate dialogue responses grounded on retrieved tabular information. cTBLS uses Transformer encoder embeddings for Dense Table Retrieval and obtains up to 125% relative improvement over the retriever in the previous state-of-the-art system on the HyrbiDialogue dataset. cTBLS then uses a shared process between encoder and decoder models to perform a coarse+fine tabular knowledge (e.g., cell) ranking combined with a GPT-3.5 LLM response generator to yield a 2x relative improvement in ROUGE scores. Finally, human evaluators prefer cTBLs +80% of the time (coherency, fluency) and judge informativeness to be 4x better than the previous state-of-the-art.
cTBLS:用会话表增强大型语言模型
优化开放域会话大型语言模型(llm)的准确性和性能,同时消除幻觉是一个开放的研究挑战。一个特别有前途的方向是用结构化来源的信息来增强和巩固法学硕士。本文介绍了会话表cTBLS,这是一个基于检索到的表格信息检索和生成对话响应的三步结构。cTBLS使用Transformer编码器嵌入进行密集表检索,在hybidialogue数据集上获得了比之前最先进系统中检索器高达125%的相对改进。cTBLS然后使用编码器和解码器模型之间的共享过程,结合GPT-3.5 LLM响应生成器执行粗+细表格知识(例如,单元格)排名,从而使ROUGE分数相对提高2倍。最后,人类评估者在80%的情况下更喜欢ctbl +(连贯性、流畅性),并且判断信息性比以前的最先进技术好4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信