A Pedestrian Multiple Hypothesis Tracker Fusing Head and Body Detections

J. Sherrah, B. Ristic, D. Kamenetsky
{"title":"A Pedestrian Multiple Hypothesis Tracker Fusing Head and Body Detections","authors":"J. Sherrah, B. Ristic, D. Kamenetsky","doi":"10.1109/DICTA.2013.6691474","DOIUrl":null,"url":null,"abstract":"We present a multiple hypothesis pedestrian tracker for surveillance video that combines head and whole-body detections. The multiple hypothesis tracker deals with ambiguity in track-to-observation matching by maintaining the most likely valid data association hypotheses. Observations are head and body detections from HOG sliding window detectors. The head detector has a high probability of detection and high false alarm rate, whereas for the body detector these probabilities are lower. The two detection types are fused in a probabilistic framework to achieve robust pedestrian tracking in a crowded environment with clutter and partial occlusions. Experiments show that the use of head and body detections along with multiple hypothesis tracking can improve online track-by-detect methods.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a multiple hypothesis pedestrian tracker for surveillance video that combines head and whole-body detections. The multiple hypothesis tracker deals with ambiguity in track-to-observation matching by maintaining the most likely valid data association hypotheses. Observations are head and body detections from HOG sliding window detectors. The head detector has a high probability of detection and high false alarm rate, whereas for the body detector these probabilities are lower. The two detection types are fused in a probabilistic framework to achieve robust pedestrian tracking in a crowded environment with clutter and partial occlusions. Experiments show that the use of head and body detections along with multiple hypothesis tracking can improve online track-by-detect methods.
一种融合头部和身体检测的行人多假设跟踪器
我们提出了一个多假设行人跟踪监控视频,结合头部和全身检测。多假设跟踪器通过保持最可能有效的数据关联假设来处理跟踪-观测匹配中的模糊性。观察是头部和身体检测从HOG滑动窗口检测器。头部检测器具有高检测概率和高虚警率,而身体检测器的这些概率较低。这两种检测类型融合在一个概率框架中,以实现在杂波和部分遮挡的拥挤环境中对行人的鲁棒跟踪。实验表明,使用头部和身体检测以及多假设跟踪可以改进在线检测跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信