Profiling streams on the Java virtual machine

Eduardo Eduardo Rosales Rosero, Andrea Rosà, Walter Binder
{"title":"Profiling streams on the Java virtual machine","authors":"Eduardo Eduardo Rosales Rosero, Andrea Rosà, Walter Binder","doi":"10.1145/3397537.3397565","DOIUrl":null,"url":null,"abstract":"The java.util.stream framework is becoming a popular option among developers that target the Java Virtual Machine (JVM) to implement map-reduce-like transformations on collections. A key feature of the streams framework is enabling parallelizing a computation as easy as calling a single method. Still, developers should test whether parallelizing a stream may results in performance, liveness or safety hazards. While such issues are mainly observable at runtime, there is a lack of tools capturing information that enable understanding the dynamic behavior of a stream application. In this extended abstract, we devise a profiler focused on characterizing dynamic attributes of a stream application running on a single JVM in a shared-memory multicore. Our tool aims at collecting runtime information and key metrics to support analysis of sequential and parallel stream processing, towards helping developers make better decisions to efficiently and safely use the streams framework.","PeriodicalId":373173,"journal":{"name":"Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397537.3397565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The java.util.stream framework is becoming a popular option among developers that target the Java Virtual Machine (JVM) to implement map-reduce-like transformations on collections. A key feature of the streams framework is enabling parallelizing a computation as easy as calling a single method. Still, developers should test whether parallelizing a stream may results in performance, liveness or safety hazards. While such issues are mainly observable at runtime, there is a lack of tools capturing information that enable understanding the dynamic behavior of a stream application. In this extended abstract, we devise a profiler focused on characterizing dynamic attributes of a stream application running on a single JVM in a shared-memory multicore. Our tool aims at collecting runtime information and key metrics to support analysis of sequential and parallel stream processing, towards helping developers make better decisions to efficiently and safely use the streams framework.
在Java虚拟机上分析流
stream框架正在成为Java虚拟机(JVM)的开发人员的流行选择,以便在集合上实现类似map-reduce的转换。streams框架的一个关键特性是能够像调用单个方法一样简单地并行计算。尽管如此,开发人员应该测试并行化流是否会导致性能、活动性或安全隐患。虽然这些问题主要是在运行时观察到的,但缺乏工具来捕获能够理解流应用程序的动态行为的信息。在这个扩展的摘要中,我们设计了一个分析器,专注于描述在共享内存多核的单个JVM上运行的流应用程序的动态属性。我们的工具旨在收集运行时信息和关键指标,以支持顺序和并行流处理的分析,帮助开发人员做出更好的决策,以高效、安全地使用流框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信