Cross-Silo Federated Learning for Multi-Tier Networks with Vertical and Horizontal Data Partitioning

Anirban Das, Timothy Castiglia, Shiqiang Wang, S. Patterson
{"title":"Cross-Silo Federated Learning for Multi-Tier Networks with Vertical and Horizontal Data Partitioning","authors":"Anirban Das, Timothy Castiglia, Shiqiang Wang, S. Patterson","doi":"10.1145/3543433","DOIUrl":null,"url":null,"abstract":"We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo’s vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers’ updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo’s vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers’ updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.
具有垂直和水平数据划分的多层网络的跨筒仓联邦学习
我们考虑分层通信网络中的联邦学习。我们的网络模型由一组筒仓组成,每个筒仓存放数据的垂直分区。每个筒仓包含一个集线器和一组客户端,筒仓的垂直数据分片在其客户端之间水平分区。我们提出了分层分散坐标下降(TDCD),这是一种用于这种两层网络的高效通信分散训练算法。每个筒仓中的客户机在与其集线器共享更新之前执行多个本地梯度步骤,以减少通信开销。每个集线器通过平均其工人的更新来调整其坐标,然后集线器彼此交换中间更新。我们对算法进行了理论分析,并展示了收敛速度与垂直分区数量和局部更新次数的依赖关系。我们通过使用各种数据集和目标的基于模拟的实验进一步验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信