Improved Sparsity Aware Collaborative Spectrum Estimation for Small Cell Networks

B. K. Das, Arpan Mukherjee
{"title":"Improved Sparsity Aware Collaborative Spectrum Estimation for Small Cell Networks","authors":"B. K. Das, Arpan Mukherjee","doi":"10.1109/CALCON49167.2020.9106549","DOIUrl":null,"url":null,"abstract":"In this paper, we propose some new adaptive approach for collaborative spectrum estimation in small scale Wireless Sensor Networks (WSN). The newly proposed regularized proportionate normalized least mean square (RPNLMS) diffusion adapt-then-combine (ATC) algorithm exploits the sparsity in the basis extension model for power spectral density (PSD) estimation. The proposed algorithm outperforms the existing sparsity aware ATC diffusion approach for the real-time collaborative spectrum estimation (CSE) in a WSN.","PeriodicalId":318478,"journal":{"name":"2020 IEEE Calcutta Conference (CALCON)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Calcutta Conference (CALCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CALCON49167.2020.9106549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose some new adaptive approach for collaborative spectrum estimation in small scale Wireless Sensor Networks (WSN). The newly proposed regularized proportionate normalized least mean square (RPNLMS) diffusion adapt-then-combine (ATC) algorithm exploits the sparsity in the basis extension model for power spectral density (PSD) estimation. The proposed algorithm outperforms the existing sparsity aware ATC diffusion approach for the real-time collaborative spectrum estimation (CSE) in a WSN.
改进的小蜂窝网络稀疏度感知协同频谱估计
本文提出了一种小型无线传感器网络(WSN)协同频谱估计的自适应方法。新提出的正则化比例归一化最小均方(RPNLMS)扩散自适应组合(ATC)算法利用基扩展模型的稀疏性进行功率谱密度(PSD)估计。该算法在WSN实时协同频谱估计中优于现有的稀疏感知ATC扩散方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信