Enhancing MobileNetV2 Performance with Layer Replication and Splitting for 3D Face Recognition Task Using Distributed Training

Kritpawit Soongswang, Phattharaphon Romphet, C. Chantrapornchai
{"title":"Enhancing MobileNetV2 Performance with Layer Replication and Splitting for 3D Face Recognition Task Using Distributed Training","authors":"Kritpawit Soongswang, Phattharaphon Romphet, C. Chantrapornchai","doi":"10.1109/ITC-CSCC58803.2023.10212828","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the operators, which are layer replication and splitting, to modify the CNN network. The algorithm for exploring suitable modifications to the prototype MobileNetV2 architecture for the 3D face recognition task is presented. The algorithm consists of two steps. The first step involves splitting the input and searching for the optimal position to expand the network through layer replication. The second part explores the architecture modification by altering the split input layer position within the model. Experiments demonstrate that the discovered model provides a more cost-effective performance, with only 0.015% increased size compared to a vanilla MobileNet V2, while delivering 6.99% higher accuracy than the previous 3D MobileNetV2 and 9.15% more accuracy than the vanilla MobileNetV2, with a total of 3,801,136 parameters. Using distributed data training on multi-GPUs, the total training time can be reduced by 75% while maintaining good accuracy compared to traditional single-GPU training.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose the operators, which are layer replication and splitting, to modify the CNN network. The algorithm for exploring suitable modifications to the prototype MobileNetV2 architecture for the 3D face recognition task is presented. The algorithm consists of two steps. The first step involves splitting the input and searching for the optimal position to expand the network through layer replication. The second part explores the architecture modification by altering the split input layer position within the model. Experiments demonstrate that the discovered model provides a more cost-effective performance, with only 0.015% increased size compared to a vanilla MobileNet V2, while delivering 6.99% higher accuracy than the previous 3D MobileNetV2 and 9.15% more accuracy than the vanilla MobileNetV2, with a total of 3,801,136 parameters. Using distributed data training on multi-GPUs, the total training time can be reduced by 75% while maintaining good accuracy compared to traditional single-GPU training.
使用分布式训练增强MobileNetV2的层复制和分割性能,用于3D人脸识别任务
在本文中,我们提出了层复制和层分裂算子来修改CNN网络。针对三维人脸识别任务,提出了对原型MobileNetV2架构进行适当修改的算法。该算法分为两步。第一步包括分割输入并搜索通过层复制扩展网络的最佳位置。第二部分探讨了通过改变模型中的分割输入层位置来修改体系结构。实验表明,所发现的模型提供了更高的性价比,与vanilla MobileNetV2相比,尺寸仅增加了0.015%,而精度比之前的3D MobileNetV2高6.99%,比vanilla MobileNetV2高9.15%,总共有3,801,136个参数。在多gpu上使用分布式数据训练,与传统的单gpu训练相比,总训练时间可减少75%,同时保持良好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信