Soft Sensor Modeling for Oxygen-Content in Flue Gasses in 1000MW Ultra-superficial Units

Shihe Chen, Z. Xi, Weiwu Yan, Dandan Zhang
{"title":"Soft Sensor Modeling for Oxygen-Content in Flue Gasses in 1000MW Ultra-superficial Units","authors":"Shihe Chen, Z. Xi, Weiwu Yan, Dandan Zhang","doi":"10.1109/ICIICII.2015.124","DOIUrl":null,"url":null,"abstract":"Ultra-supercritical unit, which can implement clean coal combustion and improve energy efficiency, is an important trend of thermal power plants in China. Aiming to the measurement of oxygen-content in flue gasses in Ultra-supercritical unit in a power plant, this paper discusses a soft-sensing model method based on Gaussian process regression (GPR). Then GPR based soft sensor is applied to estimate the Oxygen-content in Flue Gasses in 1000MW Ultra-superficial Units. The experiment results show that the method of soft-sensing based on Gaussian process regression is not only easy to implement, but also has small predicted error and uncertainty.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-supercritical unit, which can implement clean coal combustion and improve energy efficiency, is an important trend of thermal power plants in China. Aiming to the measurement of oxygen-content in flue gasses in Ultra-supercritical unit in a power plant, this paper discusses a soft-sensing model method based on Gaussian process regression (GPR). Then GPR based soft sensor is applied to estimate the Oxygen-content in Flue Gasses in 1000MW Ultra-superficial Units. The experiment results show that the method of soft-sensing based on Gaussian process regression is not only easy to implement, but also has small predicted error and uncertainty.
1000MW超浅层机组烟气含氧量软测量建模
超超临界机组能够实现清洁煤燃烧,提高能源效率,是中国火电厂发展的重要趋势。针对某电厂超超临界机组烟气含氧量的测量,提出了一种基于高斯过程回归(GPR)的软测量模型方法。然后,将基于探地雷达的软传感器应用于1000MW超浅层机组烟气中氧含量的估算。实验结果表明,基于高斯过程回归的软测量方法不仅易于实现,而且具有较小的预测误差和不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信