Efficient computation of two-dimensional solution sets maximizing the epsilon-indicator

K. Bringmann, T. Friedrich, Patrick Klitzke
{"title":"Efficient computation of two-dimensional solution sets maximizing the epsilon-indicator","authors":"K. Bringmann, T. Friedrich, Patrick Klitzke","doi":"10.1109/CEC.2015.7256995","DOIUrl":null,"url":null,"abstract":"The majority of empirical comparisons of multi-objective evolutionary algorithms (MOEAs) are performed on synthetic benchmark functions. One of the advantages of synthetic test functions is the a-priori knowledge of the optimal Pareto front. This allows measuring the proximity to the optimal front for the solution sets returned by the different MOEAs. Such a comparison is only meaningful if the cardinality of all solution sets is bounded by some fixed k. In order to compare MOEAs to the theoretical optimum achievable with k solutions, we determine best possible ε-indicator values achievable with solution sets of size k, up to an error of δ. We present a new algorithm with runtime O(k · log2(δ-1)), which is an exponential improvement regarding the dependence on the error δ compared to all previous work. We show mathematical correctness of our algorithm and determine optimal solution sets for sets of cardinality k ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000} for the well known test suits DTLZ, ZDT, WFG and LZ09 up to error δ = 10-25.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"919 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7256995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The majority of empirical comparisons of multi-objective evolutionary algorithms (MOEAs) are performed on synthetic benchmark functions. One of the advantages of synthetic test functions is the a-priori knowledge of the optimal Pareto front. This allows measuring the proximity to the optimal front for the solution sets returned by the different MOEAs. Such a comparison is only meaningful if the cardinality of all solution sets is bounded by some fixed k. In order to compare MOEAs to the theoretical optimum achievable with k solutions, we determine best possible ε-indicator values achievable with solution sets of size k, up to an error of δ. We present a new algorithm with runtime O(k · log2(δ-1)), which is an exponential improvement regarding the dependence on the error δ compared to all previous work. We show mathematical correctness of our algorithm and determine optimal solution sets for sets of cardinality k ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000} for the well known test suits DTLZ, ZDT, WFG and LZ09 up to error δ = 10-25.
有效的二维解集计算最大化的ε -指标
多目标进化算法(moea)的大多数经验比较都是在合成基准函数上进行的。综合测试函数的优点之一是可以先验地知道最优帕累托前沿。这允许测量不同moea返回的解决方案集与最佳前端的接近程度。这样的比较只有在所有解集的基数由某个固定的k限定时才有意义。为了将moea与k个解可实现的理论最优值进行比较,我们确定了大小为k的解集可实现的最佳ε-指标值,误差为δ。我们提出了一种运行时间为O(k·log2(δ-1))的新算法,与之前的所有工作相比,它对误差δ的依赖性是指数级的改进。我们证明了我们的算法的数学正确性,并为众所周知的测试套件DTLZ, ZDT, WFG和LZ09确定了k∈{2,3,4,5,10,20,50,100,1000}的基数集的最优解集,误差为δ = 10-25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信