Scheduling active camera resources for multiple moving targets

Christopher D. W. Ward, M. Naish
{"title":"Scheduling active camera resources for multiple moving targets","authors":"Christopher D. W. Ward, M. Naish","doi":"10.1109/CCECE.2009.5090187","DOIUrl":null,"url":null,"abstract":"Five scheduling policies that have been developed and implemented to manage the active resources of a centralized active vision system are presented in this paper. These scheduling policies are tasked with making target-to-camera assignments in an attempt to maximize the number of targets that can be imaged with the system's active cameras. A comparative simulation-based evaluation has been performed to investigate the performance of the system under different target and system operating parameters for all five scheduling policies. Parameters considered include: target entry conditions, congestion levels, target-to-camera speeds, target trajectories, and number of active cameras. An overall trend in the relative performance of the scheduling algorithms was observed. The Least System Reconfiguration and Future Least System Reconfiguration scheduling policies performed the best for the majority of conditions investigated, while the Load Sharing and First Come First Serve policies performed the poorest. The performance of the Earliest Deadline First policy was highly dependent on target predictability.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"394 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Five scheduling policies that have been developed and implemented to manage the active resources of a centralized active vision system are presented in this paper. These scheduling policies are tasked with making target-to-camera assignments in an attempt to maximize the number of targets that can be imaged with the system's active cameras. A comparative simulation-based evaluation has been performed to investigate the performance of the system under different target and system operating parameters for all five scheduling policies. Parameters considered include: target entry conditions, congestion levels, target-to-camera speeds, target trajectories, and number of active cameras. An overall trend in the relative performance of the scheduling algorithms was observed. The Least System Reconfiguration and Future Least System Reconfiguration scheduling policies performed the best for the majority of conditions investigated, while the Load Sharing and First Come First Serve policies performed the poorest. The performance of the Earliest Deadline First policy was highly dependent on target predictability.
为多个移动目标调度活动摄像机资源
本文提出了五种用于集中式主动视觉系统活动资源管理的调度策略。这些调度策略的任务是进行目标到摄像机的分配,试图最大化系统活动摄像机可以成像的目标数量。采用比较仿真的方法,对五种调度策略在不同目标和系统运行参数下的系统性能进行了研究。考虑的参数包括:目标进入条件、拥塞程度、目标到摄像机的速度、目标轨迹和活动摄像机的数量。观察到调度算法的相对性能的总体趋势。在大多数情况下,最小系统重构和未来最小系统重构调度策略表现最好,而负载共享和先到先得策略表现最差。“最早截止日期优先”策略的表现高度依赖于目标的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信