Dynamical properties of direct products of discrete dynamical systems

M. Barinova, Evgenia K. Shustova
{"title":"Dynamical properties of direct products of discrete dynamical systems","authors":"M. Barinova, Evgenia K. Shustova","doi":"10.15507/2079-6900.24.202201.21-30","DOIUrl":null,"url":null,"abstract":"A natural way for creating new dynamical systems is to consider direct products of already known systems. The paper studies some dynamical properties of direct products of homeomorphisms and diffeomorphisms. In particular, authors prove that a chain-recurrent set of the direct product of homeomorphisms is a direct product of the chain-recurrent sets. Another result established in the paper is that the direct product of diffeomorphisms holds hyperbolic structure on the direct product of hyperbolic sets. It is known that if a diffeomorphism has a hyperbolic chain-recurrent set, then this mapping is Ω-stable. Therefore, it follows from the results of the paper that the direct product of Ω-stable diffeomorphisms is also Ω-stable. Another question which is raised in the article concerns the existence of an energy function for the direct product of diffeomorphisms which already have such functions (recall that energy function is a smooth Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system). Authors show that in this case the function can be found as a weighted sum of energy functions of initial diffeomorphisms.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"397 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.24.202201.21-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A natural way for creating new dynamical systems is to consider direct products of already known systems. The paper studies some dynamical properties of direct products of homeomorphisms and diffeomorphisms. In particular, authors prove that a chain-recurrent set of the direct product of homeomorphisms is a direct product of the chain-recurrent sets. Another result established in the paper is that the direct product of diffeomorphisms holds hyperbolic structure on the direct product of hyperbolic sets. It is known that if a diffeomorphism has a hyperbolic chain-recurrent set, then this mapping is Ω-stable. Therefore, it follows from the results of the paper that the direct product of Ω-stable diffeomorphisms is also Ω-stable. Another question which is raised in the article concerns the existence of an energy function for the direct product of diffeomorphisms which already have such functions (recall that energy function is a smooth Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system). Authors show that in this case the function can be found as a weighted sum of energy functions of initial diffeomorphisms.
离散动力系统直接积的动力学性质
创建新的动力系统的自然方法是考虑已知系统的直接乘积。本文研究了同胚和微分同胚的直积的一些动力学性质。特别地,作者证明了同胚的直积的链循环集是这些链循环集的直积。本文建立的另一个结果是微分同胚的直积在双曲集的直积上保持双曲结构。已知如果一个微分同胚有一个双曲链循环集,则该映射为Ω-stable。因此,由本文的结果可知Ω-stable的差同态的直接积也是Ω-stable。本文提出的另一个问题是关于已经有这样的函数的微分同态的直接积的能量函数的存在性(回想一下,能量函数是一个光滑的李雅普诺夫函数,它的临界点集合与系统的链循环集一致)。作者证明,在这种情况下,函数可以被发现为初始微分同态的能量函数的加权和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信