{"title":"Spatial-Channel Context-Based Entropy Modeling for End-to-end Optimized Image Compression","authors":"Chongxi Li, Jixiang Luo, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong","doi":"10.1109/VCIP49819.2020.9301882","DOIUrl":null,"url":null,"abstract":"End-to-end optimized image compression has emerged as a disruptive technique to reduce the spatial redundancies with an improved reconstruction quality. However, existing entropy model for latent representations cannot sufficiently exploit their spatial and channel-wise correlations. In this paper, we propose a novel entropy model based on spatial-channel contexts for end-to-end optimized image compression. The proposed model jointly leverages spatial structural dependencies and channel-wise correlations to improve the probabilistic estimation of latent representations. Instead of complex autoregressive hyperprior network, shallow artificial neural networks (ANNs) incorporating 3-D masks are developed to efficiently realize the entropy model with a guarantee of causality. Experimental results demonstrate that the proposed model achieves competitive rate-distortion performance and reduces model complexity in comparison to recent end-to-end optimized methods for image compression.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
End-to-end optimized image compression has emerged as a disruptive technique to reduce the spatial redundancies with an improved reconstruction quality. However, existing entropy model for latent representations cannot sufficiently exploit their spatial and channel-wise correlations. In this paper, we propose a novel entropy model based on spatial-channel contexts for end-to-end optimized image compression. The proposed model jointly leverages spatial structural dependencies and channel-wise correlations to improve the probabilistic estimation of latent representations. Instead of complex autoregressive hyperprior network, shallow artificial neural networks (ANNs) incorporating 3-D masks are developed to efficiently realize the entropy model with a guarantee of causality. Experimental results demonstrate that the proposed model achieves competitive rate-distortion performance and reduces model complexity in comparison to recent end-to-end optimized methods for image compression.