Dynamic Neural Network-based Feedback Linearization Control of a Pressurized Water Reactor

Amine Naimi, Jiamei Deng, S. Shimjith, A. Arul
{"title":"Dynamic Neural Network-based Feedback Linearization Control of a Pressurized Water Reactor","authors":"Amine Naimi, Jiamei Deng, S. Shimjith, A. Arul","doi":"10.1109/DeSE51703.2020.9450737","DOIUrl":null,"url":null,"abstract":"This note presents a nonlinear control approach using dynamic neural network (DNN)-based feedback linearization (FBL) for nuclear reactor power control. The reactor model adopted in this study is based on neutronic dynamic and thermal-hydraulic models. The nonlinear plant is identified by a single-layer DNN trained using Quasi-Newton and Interior-Point methods. The feedback linearization scheme is combined with a Proportional-Integral (P-I) controller and simulations show good performance of the proposed controller. The efficacy of the controller is evaluated in the load-following mode of operation. Moreover, the fault-tolerance performance of the proposed approach is tested.","PeriodicalId":124051,"journal":{"name":"2020 13th International Conference on Developments in eSystems Engineering (DeSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE51703.2020.9450737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This note presents a nonlinear control approach using dynamic neural network (DNN)-based feedback linearization (FBL) for nuclear reactor power control. The reactor model adopted in this study is based on neutronic dynamic and thermal-hydraulic models. The nonlinear plant is identified by a single-layer DNN trained using Quasi-Newton and Interior-Point methods. The feedback linearization scheme is combined with a Proportional-Integral (P-I) controller and simulations show good performance of the proposed controller. The efficacy of the controller is evaluated in the load-following mode of operation. Moreover, the fault-tolerance performance of the proposed approach is tested.
基于动态神经网络的压水堆反馈线性化控制
本文提出了一种基于动态神经网络(DNN)的反馈线性化(FBL)的非线性核反应堆功率控制方法。本研究采用的反应器模型是基于中子动力学模型和热工水力模型。利用拟牛顿法和内点法训练的单层深度神经网络对非线性对象进行识别。将反馈线性化方案与比例积分(p -积分)控制器相结合,仿真结果表明该控制器具有良好的性能。在负载跟随操作模式下评估控制器的有效性。最后,对该方法的容错性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信