Dense stereo-based real-time ROI generation for on-road obstacle detection

Soon Kwon, Hyuk-Jae Lee
{"title":"Dense stereo-based real-time ROI generation for on-road obstacle detection","authors":"Soon Kwon, Hyuk-Jae Lee","doi":"10.1109/ISOCC.2016.7799840","DOIUrl":null,"url":null,"abstract":"The use of 3D visual information has become widespread as an essential cue for detecting on-road obstacles in ADAS. In this paper, we propose an accurate dense-stereo-based system for the generation of on-road obstacle ROIs. To balance the concerns of computation overhead and algorithm accuracy, this paper presents an efficient depth map generation that combines global stereo matching with depth up-sampling. The entire system has been implemented with a hardware and software partitioning method running on an FPGA and embedded CPU for real-time processing. The implementation results verify that the proposed stereo vision system efficiently outputs accurate ROI candidates for on-road obstacle detection.","PeriodicalId":278207,"journal":{"name":"2016 International SoC Design Conference (ISOCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2016.7799840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The use of 3D visual information has become widespread as an essential cue for detecting on-road obstacles in ADAS. In this paper, we propose an accurate dense-stereo-based system for the generation of on-road obstacle ROIs. To balance the concerns of computation overhead and algorithm accuracy, this paper presents an efficient depth map generation that combines global stereo matching with depth up-sampling. The entire system has been implemented with a hardware and software partitioning method running on an FPGA and embedded CPU for real-time processing. The implementation results verify that the proposed stereo vision system efficiently outputs accurate ROI candidates for on-road obstacle detection.
基于密集立体的道路障碍物检测实时ROI生成
在ADAS中,3D视觉信息的使用已成为检测道路障碍物的重要线索。在本文中,我们提出了一种精确的基于密集立体的道路障碍物roi生成系统。为了平衡计算量和算法精度的问题,本文提出了一种结合全局立体匹配和深度上采样的高效深度图生成方法。整个系统在FPGA和嵌入式CPU上实现了硬件和软件分区,实现了实时处理。实验结果表明,所提出的立体视觉系统能够有效地为道路障碍物检测输出准确的ROI候选值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信