k-Intervals: A New Extension of the k-Means Algorithm

Fenfei Guo, Deqiang Han, Chongzhao Han
{"title":"k-Intervals: A New Extension of the k-Means Algorithm","authors":"Fenfei Guo, Deqiang Han, Chongzhao Han","doi":"10.1109/ICTAI.2014.45","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new extension of the k-means algorithm by changing the model it uses to represent clusters. The objectives of traditional k-means and lots of other k-means-related clustering algorithms are all center-based. We suggest using an alternative way to represent the clusters while computing the similarity between an object and a certain cluster. The purpose is to preserve more information of the clusters and at the same time keep the simplicity of the algorithm. In this paper we use intervals to represent clusters and propose a new clustering algorithm k-intervals based on this model. Experimental results on both synthetic data sets and real data sets (several UCI data sets and the ORL face database) demonstrate the effectiveness and the advantages of the proposed algorithm.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we propose a new extension of the k-means algorithm by changing the model it uses to represent clusters. The objectives of traditional k-means and lots of other k-means-related clustering algorithms are all center-based. We suggest using an alternative way to represent the clusters while computing the similarity between an object and a certain cluster. The purpose is to preserve more information of the clusters and at the same time keep the simplicity of the algorithm. In this paper we use intervals to represent clusters and propose a new clustering algorithm k-intervals based on this model. Experimental results on both synthetic data sets and real data sets (several UCI data sets and the ORL face database) demonstrate the effectiveness and the advantages of the proposed algorithm.
k-区间:k-均值算法的新扩展
在本文中,我们通过改变k-means算法用于表示聚类的模型,提出了k-means算法的一种新的扩展。传统的k-means和许多其他与k-means相关的聚类算法的目标都是基于中心的。我们建议使用另一种方法来表示集群,同时计算对象与特定集群之间的相似性。目的是在保留更多聚类信息的同时保持算法的简单性。本文用区间来表示聚类,并在此基础上提出了一种新的聚类算法k-区间。在合成数据集和真实数据集(多个UCI数据集和ORL人脸数据库)上的实验结果都证明了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信