Effective bandwidth estimation in data networks: an analysis for two traffic characterizations

José Bavio, Carina Fernández, Beatriz Marrón
{"title":"Effective bandwidth estimation in data networks: an analysis for two traffic characterizations","authors":"José Bavio, Carina Fernández, Beatriz Marrón","doi":"10.30564/ESE.V3I1.3368","DOIUrl":null,"url":null,"abstract":"he Generalized Markov Fluid Model (GMFM) is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations. In order to estimate resources allocations or in other words the channel occupation of each source, the concept of effective bandwidth (EB) proposed by Kelly [5] is used. In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model. This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking. In particular we will study two differentiated cases: dispatches following a Gaussian and Exponential distribution. The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms. The estimation process worked much better in the Gaussian distribution case than in the Exponential one.","PeriodicalId":375676,"journal":{"name":"Electrical Science & Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/ESE.V3I1.3368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

he Generalized Markov Fluid Model (GMFM) is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations. In order to estimate resources allocations or in other words the channel occupation of each source, the concept of effective bandwidth (EB) proposed by Kelly [5] is used. In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model. This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking. In particular we will study two differentiated cases: dispatches following a Gaussian and Exponential distribution. The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms. The estimation process worked much better in the Gaussian distribution case than in the Exponential one.
数据网络中的有效带宽估计:两种流量特征的分析
由于广义马尔可夫流体模型(GMFM)在描述流量波动方面具有通用性,因此我们采用广义马尔可夫流体模型对网络中的源进行建模。为了估计资源分配,即每个源的信道占用情况,使用了Kelly[5]提出的有效带宽(EB)的概念。在本文中,我们使用一个表达式来确定该模型的EB,这是特别有趣的,因为它允许根据模型的参数来表示所述量级。本文将核估计技术应用于数据网络中,给出了该模型的EB估计。特别地,我们将研究两种不同的情况:服从高斯分布和指数分布的调度。利用蒙特卡洛马尔可夫链算法生成的模拟交通轨迹对所提方法的性能进行了分析。估计过程在高斯分布情况下比在指数分布情况下工作得好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信